Skip to main content
Log in

Some novel plane trajectories for carbon atoms and fullerenes captured by two fixed parallel carbon nanotubes

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

The movement of atoms and molecules at the nanoscale constitutes a fundamental problem in physics, especially following the motion of atoms in many-body systems condensing together to form molecular structures. A number of simplified nanoscale dynamical problems have been analyzed and here we investigate the classical orbiting problem around two centers of attraction at the nanoscale. An example of such a system would be a carbon atom or a fullerene orbiting in a plane which is perpendicular to two fixed parallel carbon nanotubes. We model the van der Waals forces between the molecules by the Lennard-Jones potential. In particular, the total pairwise potential energies between carbon atoms on the fullerene and the carbon nanotubes are approximated by the continuous approach, so that the total molecular energy can be determined analytically. Since we assume that such interactions occur at a sufficiently large distance, the classical two center problem analysis is legitimate to determine various novel trajectories of the atom and fullerene numerically. It is clear that the oscillatory period of the atom for some bounded trajectories reaches terahertz frequencies. We comment that the continuous approach adopted here has the merit of a very fast computational time and can be extended to more complicated structures, in contrast to quantum mechanical calculations and molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E.H. Jones, New Scientist 32, 245 (1966)

    Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  4. P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 278, 100 (1997)

    Article  Google Scholar 

  5. D.V. Massimiliano, E. Stephane, R.H. James Jr., Introduction to Nanoscale Science and Technology (Kluwer Academic Publishers, Boston, MA, 2004)

  6. R.S. Ruoff, D.C. Lorents, Carbon 33, 925 (1995)

    Article  Google Scholar 

  7. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 225 (1999)

    Article  ADS  Google Scholar 

  8. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998)

    Article  ADS  Google Scholar 

  9. Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002)

    Article  ADS  Google Scholar 

  10. J. Cumings, A. Zettl, Science 289, 602 (2000)

    Article  ADS  Google Scholar 

  11. H. Somada, K. Hirahara, S. Akita, Y. Nakayama, Nano Lett. 9, 62 (2009)

    Article  ADS  Google Scholar 

  12. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvao, Phys. Rev. Lett. 90, 055504 (2003)

    Article  ADS  Google Scholar 

  13. J.L. Rivera, C. McCabe, P.T. Cumming, Nano Lett. 3, 1001 (2003)

    Article  ADS  Google Scholar 

  14. J.L. Rivera, C. McCabe, P.T. Cumming, Nanotechnology 16, 186 (2005)

    Article  ADS  Google Scholar 

  15. D. Baowan, J.M. Hill, Z. Angew. Math. Phys. 58, 857 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond., A 463, 461 (2007)

    MATH  Google Scholar 

  17. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond. A 463, 477 (2007)

    Article  MATH  ADS  Google Scholar 

  18. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. Lond. A 646, 691 (2008)

    ADS  Google Scholar 

  19. B.J. Cox, N. Thamwattana, J.M. Hill, J. Phys. A Math. Theor. 40, 13197 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. T.A. Hilder, J.M. Hill, Micro Nano Lett. 2, 50 (2007)

    Article  Google Scholar 

  21. T.A. Hilder, J.M. Hill, J. Appl. Phys. 101, 064319 (2007)

    Article  ADS  Google Scholar 

  22. Y. Chan, G.M. Cox, J.M. Hill, International Conference on Nanoscience and Nanotechnology, ICONN 2008, Melbourne, 25-29 February 2008, p.152

  23. Y. Chan, N. Thamwattana, G.M. Cox, J.M. Hill, J. Math. Chem. 46, 1271 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Chan, N. Thamwattana, J.M. Hill, Few-Body Syst. 46, 239 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. L.G. Taff, Celestial Mechanics: A computational guide for the practitioner (Wiley-Interscience Publication, New York, 1985)

  26. D.O. Mathúna, Integrable Systems in Celestial Mechanics (Birkhauser, Boston, 2008)

  27. J.E. Lennard, Proc. Roy. Soc. 106A, 441 (1924)

    Google Scholar 

  28. G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular forces, 1st edn. (Clarendon Press, Oxford, 1981)

  29. R.L. Burden, J.D. Faires, Numerical Analysis, 8th edn. (Thomson, South Bank, 2005)

  30. N.M. Ghoniem, E.P. Busso, N. Kioussis, H. Huang, Philos. Mag. 83, 3475 (2003)

    Article  ADS  Google Scholar 

  31. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, San Francisco, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Y., Hill, J. Some novel plane trajectories for carbon atoms and fullerenes captured by two fixed parallel carbon nanotubes. Eur. Phys. J. D 59, 367–374 (2010). https://doi.org/10.1140/epjd/e2010-00173-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00173-9

Keywords

Navigation