Skip to main content

Advertisement

Log in

DFT study of the fragmentation channels and electronic properties of Cu νn (ν= ±1,0,2; n=3-13) clusters

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report a theoretical study on small copper clusters Cu νn (ν= ±1,0,2; n=3-13). We have published the optimized geometries in a previous paper, obtained with a gradient embedded genetic algorithm (GEGA) technique, and further density functional theory (DFT) geometry reoptimization of the best GEGA cluster structures for each size and charge. For the lower energy isomers of these clusters, we report in this paper the total all-electron energies and electronic properties such as the adiabatic ionization potentials, electron affinities, global hardnesses, and binding energies. Furthermore, we compute for each possible fragmentation channels of cationic copper clusters, the involved energetics, ΔE, and the extended-hardness change, Δη, based on the maximum hardness principle of Pearson and Chattaraj, Lee, and Parr, within the conceptual DFT formalism, but where η is computed with adiabatic rather than vertical energies. Both methods are shown to be in very good agreement with most available experimental findings. We argue that extended-hardness and the extended-hardness change are good DFT descriptors to assess the preferred fragmentation channels of charged copper clusters, where formation of the hardest fragments seems to be the driving force. Our theoretical results suggest that relaxation in these species is perhaps faster than usually assumed in the experiments performed to measure their fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Google Scholar 

  • V.A. Spasov, T.H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    Google Scholar 

  • M.F. Jarrold, K.M. Greegan, Int. J. Mass Spectrom. Ion Proc. 102, 161 (1990)

    Google Scholar 

  • O. Ingólfsson, U. Busolt, K. Sugawara, J. Chem. Phys. 112, 4613 (2000)

  • S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lützenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001)

    Google Scholar 

  • M. Vogel, A. Herlert, L. Schweikhard, J. Am. Soc. Mass Spectrom. 14, 614 (2003)

    Google Scholar 

  • G. Guzmán-Ramírez, F. Aguilera-Granja, J. Robles, Eur. Phys. J. D 57, 49 (2010)

  • R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989)

  • R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Google Scholar 

  • R.G. Pearson, J. Chem. Edu. 64, 561 (1987)

    Google Scholar 

  • R.G. Pearson, Chemical Hardness (Wiley, 1997)

  • P.K. Chattaraj, H. Lee, R.G. Parr, J. Am. Chem. Soc. 113, 1855 (1991)

    Google Scholar 

  • M.K. Harbola, Proc. Natl. Acad. Sci. USA 89, 1036 (1992)

    Google Scholar 

  • R.G. Parr, Z. Zhou, Acc. Chem. Res. 26, 256 (1993)

    Google Scholar 

  • R.G. Pearson, W.E. Palke, J. Phys. Chem. 96, 3283 (1992)

    Google Scholar 

  • A.N. Alexandrova, A.I. Boldyrev, J. Chem. Theory Comput. 1, 566 (2005)

    Google Scholar 

  • A.N. Alexandrova, A.I. Boldyrev, Y. Fu, X. Yang, X. Wang, L. Wang, J. Chem. Phys. 121, 5709 (2004)

    Google Scholar 

  • M.J. Frisch et al., Gaussian 98, Revision A.7 (Gaussian, Inc., Pittsburgh PA, 1998)

  • M.J. Frisch et al., Gaussian 03, Revision D.02 (Gaussian, Inc., Wallingford CT, 2004)

  • J.C. Slater, Quantum Theory of Molecular and Solids (McGraw-Hill, 1974), Vol. 4

  • S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Google Scholar 

  • P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    Google Scholar 

  • A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  • C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  • G. Guzmán-Ramírez, A. Segovia-Ríos, J. Sierra-Arellano, J. Robles, J. Comput. Meth. Sci. Eng. 7, 507 (2007)

    Google Scholar 

  • T. Koopman, Physica 1, 104 (1934)

  • E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Google Scholar 

  • K. Jug, B. Zimmermann, P. Calaminici, A.M. Köster, J. Chem. Phys. 116, 4497 (2002)

    Google Scholar 

  • A.M. James, G.W. Lemire, P.R.R. Langridge-Smith, Chem. Phys. Lett. 227, 503 (1994)

    Google Scholar 

  • M.B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992)

    Google Scholar 

  • D.E. Powers, S.G. Hansen, M.E. Geusic, D.L. Michalopoulos, R.E. Smalley, J. Chem. Phys. 78, 2866 (1983)

    Google Scholar 

  • J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Google Scholar 

  • C.E. Moore, Atomic Energy Levels (Natl. Bureau of Standards, 1971), Vol. II

  • C.L. Pettiette, S.H. Yang, M.J. Craycraft, J. Conceicao, R.T. Laaksonen, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 88, 5377 (1988)

    Google Scholar 

  • C. Kittel, Introduction to Solid State Physics (Wiley, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guzmán-Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán-Ramírez, G., Aguilera-Granja, F. & Robles, J. DFT study of the fragmentation channels and electronic properties of Cu νn (ν= ±1,0,2; n=3-13) clusters. Eur. Phys. J. D 57, 335–342 (2010). https://doi.org/10.1140/epjd/e2010-00059-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00059-x

Keywords

Navigation