Skip to main content
Log in

Implications of an extended fractal hydrodynamic model

  • Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Considering that the motions of the particles take place on continuous but non-differentiable curves, i.e. on fractals with constant fractal dimension, an extended scale relativity model in its hydrodynamic version is built. In this approach, static (particle in a box and harmonic oscillator) and time-dependent (free particle etc.) systems are analyzed. The static systems can be associated with a coherent fractal fluid (of superconductor or of super-fluid types behavior), whose particles are moving on stationary trajectories. The complex speed field of the fractal fluid proves to be essential: the zero value of the real (differentiable) part specifies the coherence of the fractal fluid, while the non-zero value of the imaginary (non-differentiable or fractal) part selects, through some “quantization” relations, the “stationary” trajectories (that may correspond to the observables from quantum mechanics) of the fractal fluid particles. Moreover, the momentum transfer in the fractal fluid is achieved only through the fractal component of the complex speed field. The free time-dependent systems can be associated with an incoherent fractal fluid, and both the differentiable and fractal components of complex speed field are inhomogeneous in fractal coordinates due to the action of a fractal potential. It exist momentum transfer on both speed components and the “observable” in the form of an uniform motion is generated through a specific mechanism of “vacuum” polarization induced by the same fractal potential. The analysis on the fractal fluid specifies conductive properties in the case of movements synchronization both on differentiable and fractal scales, and convective properties in the absence of synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Madelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)

    Google Scholar 

  2. E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, NY, 1985)

    MATH  Google Scholar 

  3. J. Feder, A. Aharony, Fractals in Physics (North Holland, Amsterdam, 1990)

    MATH  Google Scholar 

  4. J.F. Gouyet, Physique et structures fractales (Masson, Paris, 1992)

    MATH  Google Scholar 

  5. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  6. Quantum Mechanics, Diffusion and Chaotic Fractals, edited by M.S. El Naschie, O.E. Rösler, I. Prigogine (Elsevier, Oxford, 1995)

    MATH  Google Scholar 

  7. J. Argyris, C. Ciubotariu, G. Mattatis, Chaos Solit. Fract. 12, 1 (2001)

    Article  MATH  Google Scholar 

  8. Space-time Physics and Fractality, edited by P. Weibel, G. Ord, G. Rössler (Vienna, New York, Springer, 2005)

    MATH  Google Scholar 

  9. C.P. Cristescu, Nonlinear Dynamics and Chaos in Science and Engineering (Bucharest, Academy Publishing House, 2008)

    Google Scholar 

  10. J. Cresson, F. Ben Adda, Chaos Solit. Fract. 19, 1323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Cresson, J. Math. Anal. Appl. 307, 48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. G.N. Ord, J. Phys. A 16, 1869 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.S. El Naschie, Chaos Solit. Fract. 27, 39 (2006)

    Article  MATH  Google Scholar 

  14. M.S. El Naschie, Chaos Solit. Fract. 25, 969 (2005)

    Article  MATH  Google Scholar 

  15. L. Nottale, Astron. Astrophys. 327, 867 (1997)

    ADS  Google Scholar 

  16. L. Nottale, Chaos Solit. Fract. 9, 1051 (1980)

    Article  ADS  Google Scholar 

  17. L. Nottale, Chaos Solit. Fract. 10, 459 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Nottale, Chaos Solit. Fract. 16, 539 (2003)

    Article  MATH  Google Scholar 

  19. D. Da Rocha, L. Nottale, Chaos Solit. Fract. 16, 565 (2003)

    Article  MATH  ADS  Google Scholar 

  20. L. Nottale, Chaos Solit. Fract. 25, 797 (2005)

    Article  MATH  Google Scholar 

  21. L. Nottale, M.N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.N. Célérier, L. Nottale, J. Phys. A:Math. Gen. 37, 931 (2004)

    Article  MATH  ADS  Google Scholar 

  23. I. Gottlieb, M. Agop, G. Ciobanu, A. Stroe, Chaos Solit. Fract. 30, 380 (2006)

    Article  Google Scholar 

  24. M. Agop, P.D. Ioannou, P. Nica, J. Math. Phys. 46, 062110 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Agop, P.E. Nica, P.D. Ioannou, A. Antici, V.P. Paun, Eur. Phys. J. D 49, 239 (2008)

    Article  ADS  Google Scholar 

  26. M. Agop, P. Nica, M. Girtu, Gen. Rel. Grav. 40, 35 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. M. Agop, P. Nica, P.D. Ioannou, O. Malandraki, I. Gavanas-Pahomi, Chaos Solit. Fract. 34, 1704 (2007)

    Article  Google Scholar 

  28. A.G. Agnese, R. Festa, Phys. Lett. A 227, 165 (1997)

    Article  ADS  Google Scholar 

  29. E. Schrödinger, Collected Papers on Wave Mechanics (WM Deans, London, 1928)

    MATH  Google Scholar 

  30. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (Mc Graw Hill, New York, 1965)

    MATH  Google Scholar 

  31. F. Halbwachs, Théorie relativiste des fluides à spin (Gauthier-Villars, Paris, 1960)

    Google Scholar 

  32. J. Argyris, C. Marin, C. Ciubotariu, Physics of Gravitation and the Universe (Tehnica-Info and Spiru Haret Publishing Houses, Iasi, 2006)

    Google Scholar 

  33. E.A. Jackson, Perspectives in Nonlinear Dynamics (Cambridge University Press, Cambridge, 1991), Vols. I, II

    Google Scholar 

  34. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentince-Hall, 1989)

  35. M. Agop, C. Murgulet, Nonlinear Dynamics, Ball Lightning and Cosmic Structures (Ars Longa Publishing House, Iasi, 2006)

    Google Scholar 

  36. V. Chiroiu, P. Stiuca, L. Munteanu, S. Danescu, Introduction in Nanomechanics (Romanian Academy Publishing House, Bucharest, 2005)

    Google Scholar 

  37. D.K. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  38. L.E. Ballentine, Quantum mechanics. A Modern Development (World Scientific, Singapore, 1998)

    MATH  Google Scholar 

  39. A.C. Phillips, Introduction to Quantum Mechanics (John Wiley and Sons, New York, 2003)

    Google Scholar 

  40. H.E. Wilhem, Phys. Rev. D 1, 2278 (1970)

    Article  ADS  Google Scholar 

  41. L. Conde, L. Leon, Phys. Plasmas 1, 2441 (1994)

    Article  ADS  Google Scholar 

  42. C. Ionita, D.G. Dimitriu, R. Schrittwieser, Int. J. Mass Spectrom. 233, 343 (2004)

    Article  Google Scholar 

  43. A. Nikitorov, V. Ouvarov, Éléments de la théorie des fonctions spéciales (Mir, Moskow, 1974)

    Google Scholar 

  44. I. Alcaide, P.C. Balam, L. Conde, C. Ionita, R. Schrittwieser, Contrib. Plasma Phys. 43, 373 (2003)

    Article  Google Scholar 

  45. P. Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P.D. Ioannou, Z. Borsos, Jpn J. Appl. Phys. 48, 066001 (2009)

    Article  ADS  Google Scholar 

  46. P. Mora, Phys. Rev. Lett. 90, 185002 (2003)

    Article  ADS  Google Scholar 

  47. M. Murakami, Y.G. Kang, K. Nishihara, H. Nishimura, Phys. Plasmas 12, 062706 (2005)

    Article  ADS  Google Scholar 

  48. L. Landau, E. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987)

    MATH  Google Scholar 

  49. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962)

    Google Scholar 

  50. I.C.E. Turcu, J.B. Dance, X-Rays from Laser Plasmas (Wiley, Chichester, UK, 1998)

    Google Scholar 

  51. O.C. Zienkievicz, R.L. Taylor, The Finite Element Method (McGraw-Hill, New York, 1991)

    Google Scholar 

  52. S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focsa, Phys. Rev. E 78, 062706 (2008)

    Article  Google Scholar 

  53. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  54. A.V. Bulgakov, N.M. Bulgakova, J. Phys. D 31, 693 (1998)

    Article  ADS  Google Scholar 

  55. P. Cristescu, Nonlinear Dynamics and Chaos. Theoretical Fundaments and Applications (Academy Publishing House, Bucharest, 2008)

    Google Scholar 

  56. A.R. El-Nabulsi, Chaos Solit. Fract. 42, 2384 (2009)

    Article  MathSciNet  Google Scholar 

  57. A.R. El-Nabulsi, Chaos Solit. Fract. 42, 2924 (2009)

    Article  MathSciNet  Google Scholar 

  58. B.M. Hambly, M.L. Lapidus, Trans. Amer. Math. Soc. 358, 285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. A. Arneodo, F. Argoul, E. Bacry, J.F. Muzy, Phys. Rev. Lett. 68, 3456 (1992)

    Article  ADS  Google Scholar 

  60. A. Arneodo, F. Argoul, J.F. Muzy, M. Tabard, E. Bacry, Fractals 1, 629 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agop, M., Nica, P., Gurlui, S. et al. Implications of an extended fractal hydrodynamic model. Eur. Phys. J. D 56, 405–419 (2010). https://doi.org/10.1140/epjd/e2009-00304-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00304-5

Keywords

Navigation