Skip to main content
Log in

Signatures of the Unruh effect via high-power, short-pulse lasers

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3×1018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2×1028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (γ∼300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (γ≈2) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sauter, Z. Phys. 69, 742 (1931); F. Sauter, Z. Phys. 73, 547 (1931); W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936); V. Weisskopf, Kong. Dans. Vid. Selsk., Mat.-fys. Medd. XIV, 6 (1936); J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MATH  ADS  Google Scholar 

  2. R. Schützhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  4. S.W. Hawking, Commun. Math. Phys. 43, 194 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97, 121302 (2006)

    Article  ADS  Google Scholar 

  6. R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 100, 091301 (2008)

    Article  ADS  Google Scholar 

  7. W.G. Unruh, R.M. Wald, Phys. Rev. D 29, 1047 (1984)

    Article  ADS  Google Scholar 

  8. A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 45, R3308 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  9. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Schützhold, C. Maia, Eur. Phys. J. D 55, 375 (2009)

    Article  Google Scholar 

  11. J.S. Bell, J.M. Leinaas, Nucl. Phys. B 284, 488 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  12. W.G. Unruh, Phys. Rep. 307, 163 (1998)

    Article  ADS  Google Scholar 

  13. I. Freund, B.F. Levine, Phys. Rev. Lett. 23, 854 (1969)

    Article  ADS  Google Scholar 

  14. P. Eisenberger, S.L. McCall, Phys. Rev. Lett. 26, 684 (1971)

    Article  ADS  Google Scholar 

  15. Y. Yoda et al., J. Synchrotron Radiat. 5, 980 (1998)

    Article  Google Scholar 

  16. B. Adams et al., J. Synchrotron Radiat. 7, 81 (2000)

    Article  ADS  Google Scholar 

  17. P. Chen, T. Tajima, Phys. Rev. Lett. 83, 256 (1999)

    Article  ADS  Google Scholar 

  18. http://www.extreme-light-infrastructure.eu/

  19. S.P.D. Mangles et al., Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  20. C.G.R. Geddes et al., Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  21. J. Faure et al., Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  22. W.P. Leemans et al., Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  23. S. Karsch et al., New J. Phys. 9, 415 (2007)

    Article  ADS  Google Scholar 

  24. Zs. Major et al., accepted for publication in: The Review of Laser Engineering (Journal of the Laser Society of Japan) (2009)

  25. S. Gordienko et al., Phys. Rev. Lett. 94, 103903 (2005)

    Article  ADS  Google Scholar 

  26. P. Jacobs et al., Prog. Part. Nucl. Phys. 54, 443 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. C.G.R. Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)

    Article  ADS  Google Scholar 

  28. S. Tashenov, Ph.D. thesis, Univ. Frankfurt, 2005, unpublished

  29. A. Ferguson, Nucl. Instrum. Meth. 162, 565 (1979)

    Article  ADS  Google Scholar 

  30. R. Kroeger et al., Nucl. Instrum. Meth. A 436, 165 (1999)

    Article  ADS  Google Scholar 

  31. T. Stöhlker et al., J. Phys. 58, 411 (2007)

    Google Scholar 

  32. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 682

    MATH  Google Scholar 

  33. D. Habs et al., Appl. Phys. B 93, 349 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Thirolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirolf, P., Habs, D., Henig, A. et al. Signatures of the Unruh effect via high-power, short-pulse lasers. Eur. Phys. J. D 55, 379–389 (2009). https://doi.org/10.1140/epjd/e2009-00149-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00149-x

PACS

Navigation