Skip to main content

Advertisement

Log in

Controlling the divergence of high harmonics from solid targets: a route toward coherent harmonic focusing

  • Topical issue: Fundamental Physics and Ultra-High Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 1029 W cm-2 with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. N. Narozhny, S. Bulanov, V. Mur, V. Popov, Phys. Lett. A 330, 1 (2004)

    Article  MATH  ADS  Google Scholar 

  3. N. Narozhny, S. Bulanov, V. Mur, V. Popov, JETP Lett. 80, 382 (2004)

    Article  ADS  Google Scholar 

  4. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  5. R. Schützhold, G. Schaller, D. Habs, Phys. Rev. Lett. 97, 121302 (2006)

    Article  ADS  Google Scholar 

  6. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Plasmas 14, 032102 (2007)

    Article  ADS  Google Scholar 

  7. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 93, 115002 (2004)

    Article  ADS  Google Scholar 

  9. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  10. G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)

    Article  ADS  Google Scholar 

  11. S.V. Bulanov, N.M. Naumova, F. Pegoraro, Phys. Plasmas 1, 745 (1994)

    Article  ADS  Google Scholar 

  12. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996)

    Article  ADS  Google Scholar 

  13. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 94, 103903 (2005)

    Article  ADS  Google Scholar 

  14. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Phys. Rev. Lett. 96, 125004 (2006)

    Article  ADS  Google Scholar 

  15. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, Nat. Phys. 2, 456 (2006)

    Article  Google Scholar 

  16. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Phys. Rev. Lett. 99, 085001 (2007)

    Article  ADS  Google Scholar 

  17. Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Nat. Phys. 5, 124 (2009)

    Article  Google Scholar 

  18. P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

    Article  ADS  Google Scholar 

  19. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  20. W. Ackermann et al., Nature Photonics 1, 336 (2007)

    Article  ADS  Google Scholar 

  21. A.J. Langley, E.J. Divall, C.H. Hooker, M.H.R. Hutchinson, A.J.-M.P. Lecot, D. Marshall, M.E. Payne, P.F. Taday, Technical report, Rutherford Appleton Laboratory, 2000

  22. H. Kapteyn, M. Murnane, A. Szoke, R. Falcone, Opt. Lett. 16, 490 (1991)

    Article  ADS  Google Scholar 

  23. B. Dromey, S. Kar, M. Zepf, P. Foster, Rev. Sci. Instrum. 75, 645 (2004)

    Article  ADS  Google Scholar 

  24. D. Neely, D. Chambers, C. Danson, P. Norreys, S. Preston, F. Quinn, M. Roper, J. Wark, M. Zepf, AIP Conf. Proc. 426, 479 (1998)

    Article  ADS  Google Scholar 

  25. R. Hörlein, B. Dromey, D. Adams, Y. Nomura, S. Kar, K. Markey, P.S. Foster, D. Neely, F. Krausz, G.D. Tsakiris, M. Zepf, New J. Phys. 10, 083002 (2008)

    Google Scholar 

  26. B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S.G. Rykovanov, D.C. Caroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Nat. Phys. 5, 146 (2009)

    Article  Google Scholar 

  27. D. An der Brügge, A. Pukhov, Phys. Plasmas 14, 093104 (2007)

  28. S. Rykovanov, M. Geissler, J. Meyer-ter-Vehn, G.D. Tsakiris, New J. Phys. 10, 025025 (2008)

    Google Scholar 

  29. M. Geissler, S. Rykovanov, J. Schreiber, J. Meyer-ter-Vehn, G.D. Tsakiris, New J. Phys. 9, 218 (2007)

    Article  ADS  Google Scholar 

  30. N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou, G.A. Mourou, Phys. Rev. Lett. 92, 063902 (2004)

    Article  ADS  Google Scholar 

  31. M. Born, E. Wolf, Principles of optics, 7th edn. (Cambridge University Press, 1999)

  32. T. Morishita, S. Watanabe, C.D. Lin, Phys. Rev. Lett. 98, 083003 (2007)

    Article  ADS  Google Scholar 

  33. J. Feist, S. Nagele, R. Pazourek, E. Persson, B.I. Schneider, L.A. Collins, J. Burgdörfer, Phys. Rev. A 77, 043420 (2008)

    Article  ADS  Google Scholar 

  34. J.J. Honrubia, J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006)

    Article  ADS  Google Scholar 

  35. R. Hörlein, Y. Nomura, J. Osterhoff, Z. Major, S. Karsch, F. Krausz, G.D. Tsakiris, Plasma Phys. Contr. Fusion 50, 124002 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hörlein.

Electronic supplementary material

Supplementary material, approximately 3.26 MB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörlein, R., Rykovanov, S., Dromey, B. et al. Controlling the divergence of high harmonics from solid targets: a route toward coherent harmonic focusing. Eur. Phys. J. D 55, 475–481 (2009). https://doi.org/10.1140/epjd/e2009-00084-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00084-x

PACS

Navigation