Skip to main content
Log in

Atomic density of a harmonically trapped ideal gas near Bose-Einstein transition temperature

  • Laser Cooling and Quantum Gas
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this temperature, the ground-state density has the same order of magnitude as the excited states density at the centre of the trap. This holds in a range of temperatures where the ground-state population is negligible compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to semi-classical approximations. We show that these latter should include the ground-state contribution to be accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, edited by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999)

  • F. Dalfovo, S. Giorgini, L.P. Pitaeskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  • S. Grossmann, M. Holthaus, Z. Naturforsch. A 50, 921 (1995)

    Google Scholar 

  • W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 656 (1996)

    Article  ADS  Google Scholar 

  • K. Kirsten, D.J. Toms, Phys. Rev. A 54, 4188 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 54, R4633 (1996)

  • H. Haugerud, T. Haugest, F. Ravndal, Phys. Lett. A 225, 18 (1997)

    Article  ADS  Google Scholar 

  • S. Giorgini, L.P. Pitaevskii, S. Stringari, J. Low Temp. Phys. 109, 309 (1997)

    Google Scholar 

  • R.K. Pathria, Phys. Rev. A 58, 1490 (1998)

    Article  ADS  Google Scholar 

  • W. Krauth, Phys. Rev. Lett. 77, 3695 (1996)

    Article  ADS  Google Scholar 

  • P. Arnold, B. Tomasik, Phys. Rev. A 64, 053609 (2001)

    Article  ADS  Google Scholar 

  • K. Huang, Statistical Mechanics (Wiley, 1987)

  • L.D. Landau, E.M. Liftshiz, Statistical Physics (Butterworths, 1996)

  • H.D. Politzer, Phys. Rev. A 54, 5048 (1996)

    Article  ADS  Google Scholar 

  • C. Herzog, M. Olshanii, Phys. Rev. A 55, 3254 (1997)

    Article  ADS  Google Scholar 

  • Y. Castin, lecture note in “Coherent atomic matter waves”, Les Houches, Session LXXII, edited by R. Kaiser, C.I. Westbrook, F. David (Springer, 2001)

  • T. Bergeman, D.L. Feder, N.L. Balazs, B.I. Schneider, Phys. Rev. A 61, 063605 (2000)

    Article  ADS  Google Scholar 

  • In reference pathria, the transition temperature was indeed Tsc (see later in the text). The transition temperature defined by the maximum of the second derivative of the condensate fraction has been calculated for atom number in the range 103–108; the relative deviation is below ∼ 10-3 on the transition temperature and ∼ 10-2 on the condensate peak density fraction

  • We use the usual definition of Bose functions \(g_a(x)=\sum\limits_{l=1}^\infty x^l/l^a\). We remind that ga(1)=ζ(a) with \(\zeta(\ )\) the Riemann Zeta function. Note that g1(x)=-ln (1-x) and d ga/ d x(x)=ga-1(x)/x

  • After submission of this article, we have been aware of a different type of semi-classical approximations which does not give rise to divergences. See V.I. Yukalov, Phys. Rev. A 72, 033608 (2005)

    Article  Google Scholar 

  • We use the result of reference robinson for the calculation of the Bose functions near the transition temperature. For the series in model ex, the convergence is very slow but can easily be accelerated. For instance, it is much better to write \(N={z\over 1-z}+\sum\limits_{l=1}^\infty z^l({1\over 1-e^{-\tau l }}-1)\) because the second term converges for large l because of the zl part and because of the \(({1\over 1-e^{-\tau l }}-1)\) part

  • J.E. Robinson, Phys. Rev. 83, 678 (1951)

    Article  ADS  Google Scholar 

  • A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C.I. Westbrook, A. Aspect, Science 292, 461 (2001); published online 22 march 2001 (10.1126/science.1060622)

    ADS  Google Scholar 

  • V. Vuletic, A.J. Kerman, C. Chin, S. Chu, Phys. Rev. Lett. 82, 1406 (1999)

    Article  ADS  Google Scholar 

  • M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C.I. Westbrook, Science 310, 648 (2005); published online 15 september 2005 (10.1126/science.1118024)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Boiron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppeler, R., Viana Gomes, J. & Boiron, D. Atomic density of a harmonically trapped ideal gas near Bose-Einstein transition temperature. Eur. Phys. J. D 41, 157–162 (2007). https://doi.org/10.1140/epjd/e2006-00197-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00197-8

PACS.

Navigation