Skip to main content
Log in

Effect of the molecular structure on the gas-surface scattering studied by supersonic molecular beam

  • Gas-Surface Interactions
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The experimental apparatus for investigating the gas-surface interaction has been newly developed. The coherent length of the helium, the energy resolution and the angular spread of the beam in the apparatus were established as ω= 16 nm, \(\Delta E/E = 2.4{\%}\) and Δθ= 0.5, respectively, through the measurements of the time-of-flight of He beam and of the angular intensity distributions of He scattered from LiF(001). The angular intensity distributions of Ar, N2 and CO scattered from the LiF(001) surface along the [100] azimuthal direction were then measured as a function of incident translational energy. The effects of the molecular structural anisotropy and center-of-mass position on the gas-surface inelastic collision at the corrugated surface are discussed with predictions based on a recently developed simple classical theory of the ellipsoid-washboard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.A. Barker, D.J. Auerbach, Surf. Sci. Rep. 4, 1 (1985)

    Article  MathSciNet  Google Scholar 

  • C.T. Rettner, M.N.R. Ashfold, Dynamics of Gas-Surface Interactions (The Royal Society of Chemistry, 1991)

  • R.J. Madix, Surface Reactions (Springer-Verlag, 1994)

  • C.T. Rettner, D.J. Auerbach, J.C. Tully, A.W. Kleyn, J. Phys. Chem. 100, 13021 (1996)

    Article  Google Scholar 

  • M. Bonn, A.W. Kleyn, G.J. Kroes, Surf. Sci. 500, 475 (2002)

    Article  Google Scholar 

  • A.W. Kleyn, Chem. Soc. Rev. 32, 87 (2003)

    Article  Google Scholar 

  • R.M. Logan, R.E. Stickney, J. Chem. Phys. 44, 195 (1966)

    Article  Google Scholar 

  • A.W. Kleyn, T.C.M. Horn, Phys. Rep. 199, 191 (1991)

    Article  ADS  Google Scholar 

  • J.C. Tully, J. Chem. Phys. 92, 680 (1990)

    Article  ADS  Google Scholar 

  • B. Berenbak, S. Zboray, B. Riedmuller, D.C. Papageorgopoulos, S. Stolteb, A.W. Kleyn, Phys. Chem. Chem. Phys. 4, 68 (2002)

    Article  Google Scholar 

  • R.J. Lahaye, S. Stolte, S. Holloway, A.W.Kleyn, J. Chem. Phys. 104, 8301 (1996)

    Article  ADS  Google Scholar 

  • J.A. Stinett, R.J. Madix, J.C. Tully, J. Chem. Phys. 104, 3134 (1996)

    Article  ADS  Google Scholar 

  • T. Tomii, T. Kondo, S. Yagyu, S. Yamamoto, J. Vac. Sci. Technol. A 19, 675 (2001)

    Article  ADS  Google Scholar 

  • T. Kondo, T. Tomii, S. Yagyu, S. Yamamoto, J. Vac. Sci. Technol. A 19, 2468 (2001)

    Article  ADS  Google Scholar 

  • T. Kondo, D. Mori, R. Okada, M. Sasaki, S. Yamamoto, J. Chem. Phys. 123, 114712 (2005)

    Article  Google Scholar 

  • A.W. Kleyn, A.C. Luntz, D.J. Auerbach, Phys. Rev. Lett. 47, 1169 (1981)

    Article  ADS  Google Scholar 

  • K.R. Lykke, B.D. Kay, J. Phys. Condens. Matter 3, S65 (1991)

  • M.A. Hines, R.N. Zare, J. Chem. Phys. 98, 9134 (1993)

    Article  ADS  Google Scholar 

  • A.W. Kleyn, Prog. Surf. Sci. 54, 407 (1997)

    Article  Google Scholar 

  • J.C. Polanyi, R.J. Wolf, J. Chem. Phys. 82, 1555 (1985)

    Article  ADS  Google Scholar 

  • D.C. Jacobs, R.N. Zare, J. Chem. Phys. 91, 3196 (1989)

    Article  ADS  Google Scholar 

  • J. Harris, A.C. Luntz, J. Chem. Phys. 91, 6421 (1989)

    Article  ADS  Google Scholar 

  • I. Iftimia, J.R. Manson, Phys. Rev. Lett. 87, 093201 (2001)

    Article  ADS  Google Scholar 

  • I. Iftimia, J.R. Manson, Phys. Rev. B 65, 125401 (2002)

    Article  ADS  Google Scholar 

  • I. Iftimia, J.R. Manson, Phys. Rev. B 65, 125412 (2002)

    Article  ADS  Google Scholar 

  • I. Moroz, J.R. Manson, Phys. Rev. B 69, 205406 (2004)

    Article  ADS  Google Scholar 

  • I. Moroz, H. Ambaya, J.R. Manson, J. Phys. Condens. Matter 16, S2953 (2004)

  • I. Moroz, J.R. Manson, Phys. Rev. B 71, 113405 (2005)

    Article  ADS  Google Scholar 

  • T. Kondo, H.S. Kato, T. Yamada, S. Yamamoto, M. Kawai, J. Chem. Phys. 122, 244713 (2005)

    Article  Google Scholar 

  • F. Murakami, S. Yagyu, E.S. Gillman, M. Mizunuma, Y. Takeishi, Y. Kino, H. Kita, S. Yamamoto, J. Surf. Anal. 3, 481 (1997)

    Google Scholar 

  • T. Kondo, Ph.D. thesis, University of Tsukuba, 2003

  • T. Kondo, D. Mori, R. Okada, S. Yamamoto, Jpn J. Appl. Phys. 43, 1104 (2004)

    Article  Google Scholar 

  • G. Scoles, Atomic and Molecular Beam Methods (Oxford University Press, New York, 1988), Vol. 1; (1992), Vol. 2

  • T. Kondo, T. Tomii, T. Hiraoka, T. Ikeuchi, S. Yagyu, S. Yamamoto, J. Chem. Phys. 112, 9940 (2000)

    Article  ADS  Google Scholar 

  • T. Kondo, T. Sasaki, S. Yamamoto, J. Chem. Phys. 116, 7673 (2002)

    Article  ADS  Google Scholar 

  • T. Kondo, T. Sasaki, S. Yamamoto, J. Chem. Phys. 118, 760 (2003)

    Article  ADS  Google Scholar 

  • G. Comsa, Surf. Sci. 81, 57 (1979)

    Article  Google Scholar 

  • D. R. Frankl, Surf. Sci. 84, L485 (1979)

  • G. Comsa, Surf. Sci. 84, L489 (1979)

  • The beam flux is estimated by \(Q_a =\frac{P_1 -(\chi_a +\chi_b)P_0}{\left({{\chi_a}/{S_a}} \right)+\left({\chi_b}/{S_b}\right)X_b}\frac{1}{(\pi r^2)}\) [ Torr l/(cm2s)] , where P1, P0 is the pressure in the chamber 3 (beam on and off, respectively) measured by the ion gauge, Sj the pumping speed for the particle j in the chamber 3, χj the ionization probability for particle j, Xb the amount ratio of the particle b against particle a in the mixed beam and r the radii of the beam spot at the sample (r=0.25/2 cm)

  • P.W. Atkins, Physical Chemistry, 6th edn. (Oxford University Press, 1998)

  • M.J. Yacaman, Z.T. Ocana, J. Appl. Phys. 48, 418 (1977)

    Article  ADS  Google Scholar 

  • H. Höche, H. Bethge, J. Cryst. Growth. 33, 246 (1976)

    Article  Google Scholar 

  • G. Meyer, N.M. Amer, J. Appl. Phys. 56, 2100 (1990)

    Google Scholar 

  • G. Lange, J.P. Toennies, R. Vollmer, H. Weiss, J. Chem. Phys. 98, 10096 (1993)

    Article  ADS  Google Scholar 

  • P. Barraclough, P.G. Hall, Surf. Sci. 46, 393 (1974)

    Article  Google Scholar 

  • J. Estel, H. Hoinkes, H. Kaarman, H. Nahr, H. Wilsch, Surf. Sci. 54, 393 (1976)

    Article  Google Scholar 

  • Y. Ekinci, J.P. Toennies, Surf. Sci. 563, 127 (2004)

    Article  ADS  Google Scholar 

  • N. Garcia, J. Chem. Phys. 67, 897 (1977)

    Article  ADS  Google Scholar 

  • H. Legge, J.R. Manson, J.P. Toennies, J. Chem. Phys. 110, 8767 (1999)

    Article  ADS  Google Scholar 

  • T. Tomii, T. Kondo, T. Hiraoka, T. Ikeuchi, S. Yagyu, S. Yamamoto, J. Chem. Phys. 112, 9052 (2000)

    Article  ADS  Google Scholar 

  • S. Yagyu, F. Murakami, Y. Kino, S. Yamamoto, Jpn J. Appl. Phys. 37, 2642 (1998)

    Article  Google Scholar 

  • A.C. Wight, R.E. Miller, J. Chem. Phys. 109, 1976 (1998)

    Article  ADS  Google Scholar 

  • G. Armand, J. Lapujoulade, Y. Lejay, Surf. Sci. 63, 143 (1977)

    Article  Google Scholar 

  • C. R. Arumainayagam, M.C. McMaster, G.R. Schoofs, R.J. Madix, Surf. Sci. 222, 213 (1989)

    Article  Google Scholar 

  • D. Velic, R.J. Levis, Chem. Phys. Lett. 269, 59 (1997)

    Article  Google Scholar 

  • T. Kondo, R. Okada, D. Mori, S. Yamamoto, Surf. Sci. 566-568, 1153(2004)

  • E.K. Grimmelmann, J.C. Tully, M.J. Cardillo, J. Chem. Phys. 72, 1039 (1980)

    Article  ADS  Google Scholar 

  • W.L. Nichols, J.H. Weare, J. Chem. Phys. 62, 3754 (1975)

    Article  ADS  Google Scholar 

  • W.L. Nichols, J.H. Weare, J. Chem. Phys. 63, 379 (1975)

    Article  ADS  Google Scholar 

  • W.L. Nichols, J.H. Weare, J. Chem. Phys. 66, 1075 (1977)

    Article  ADS  Google Scholar 

  • In the calculation, the rotational temperature of the molecule Tr is set to as 0 K, since Tr of the supersonic molecular beam is generally cold enough to neglect the effect on the intensity distribution. The probability S(η, ω/Vr) of a collision is assumed to be uniform, occurring at all molecular orientation angles η, since it has almost the same probabilities for all cases under our experimental conditions. The molecular mass is set to as 28 amu of CO and N2. The effective mass of the surface is set to 390 amu, which is derived from the analysis of the experimental Ar–LiF(001) scattering as shown in Figure 6 and as described the origin in Section 3.2. The moment of inertia is derived by the simple calculation of \(\frac{m_a \times m_b }{m_a +m_b }r_d^2 \), where rd is selected as reported value of CO (rd=0.1128 nm) from the hand book ref63. The semi-major axis of the ellipsoid b is set to 0.15 nm. Our experimental condition of θ+θ'=90 is included in the calculation for easy comparison with our experimental results.

  • D.R. Lide, CRC Handbook of Chemistry and Physics, 81th edn. (CRC, New York, 1998), pp. 9-82

  • T. Kondo, T. Tomii, S. Yamamoto, Chem. Phys. (2005) in press

  • E.W. Kuipers, M.G. Tenner, A.W. Kleyn, S. Stolte, Phys. Rev. Lett. 62, 2152 (1989)

    Article  ADS  Google Scholar 

  • G.H. Fecher, N. Bowering, M. Volkmer, B. Pawlitzky, U. Heinzmann, Surf. Sci. 230, L169 (1990)

  • H. Asada, Jpn J. Appl. Phys. 20, 527 (1981)

    Article  Google Scholar 

  • M.G. Tenner, E.W. Kuipers, A.W. Kleyn, Surf. Sci. 242, 376 (1991)

    Article  Google Scholar 

  • For example. C.T. Reeves, B.A. Ferguson, C.B. Mullins, G.O. Sitz, B.A. Helmer, D.B. Graves, J. Chem. Phys. 111, 7567 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, T., Kato, H., Yamada, T. et al. Effect of the molecular structure on the gas-surface scattering studied by supersonic molecular beam. Eur. Phys. J. D 38, 129–138 (2006). https://doi.org/10.1140/epjd/e2005-00284-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00284-4

PACS.

Navigation