Skip to main content
Log in

CO dynamics induced by tunneling electrons: differences on Cu(110) and Ag(110)

  • Surface Processes
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The electronic current originating in a scanning tunneling microscope (STM) can be used to induce motion and desorption of adsorbates on surfaces. The manipulation of CO molecules on noble metal surfaces is an academic case that has received little theoretical attention. Here, we do thorough density functional theory calculations that explore the chemisorption of CO on Cu(110) and Ag(110) surface and its vibrational properties. The STM induced dynamics are explored after excitation of the highest lying mode, the C–O stretch. In order to give a complete account of this dynamics, the lifetime of the different CO modes is evaluated (by only including the mode decay into electronic excitations of the host surface) as well as the intermode coupling. Hence, after excitation of the stretch mode, the lower-energy modes are populated via intermode coupling and depopulated by electron-hole excitations. This study reveals the intrinsic features of the STM induced motion of CO on Cu(110) and Ag(110).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. Binnig, H. Röhrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)

    Article  Google Scholar 

  • D.M. Eigler, E. Schweizer, Nature 344, 524 (1990)

    Article  Google Scholar 

  • G. Dujardin, R.E. Walkup, Ph. Avouris, Science 255, 1232 (1992); B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao, M. Persson, B.I. Lundqvist, Phys. Rev. Lett. 78, 4410 (1997)

    Google Scholar 

  • H.J. Lee, W. Ho, Science 286, 1719 (1999)

    Article  PubMed  Google Scholar 

  • B.J. McIntyre, M. Salmeron, G.A. Somorjai, Science 265, 1415 (1994)

    Google Scholar 

  • B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732 (1998)

    PubMed  Google Scholar 

  • T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba, Science 295, 2055 (2002)

    Article  PubMed  Google Scholar 

  • J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.-P. Rust, Nature 423, 525 (2003)

    Article  PubMed  Google Scholar 

  • L. Bartels, G. Meyer, K.-H. Rieder, D. Velic, E. Knoese, A. Hotzel, M. Wolf, G. Ertl, Phys. Rev. Lett. 80, 2004 (1998)

    Article  Google Scholar 

  • M.-L. Bocquet, P. Sauter, Surf. Sci. 360, 128 (1996)

    Article  Google Scholar 

  • B.N.J. Persson, H. Ueba, Surf. Sci. 502/503, 18 (2002)

    Google Scholar 

  • L.J. Lauhon, W. Ho, Phys. Rev. B 60, R8525 (1999)

  • F. Moresco, G. Meyer, K.-H. Rieder, Mod. Phys. Lett. B 13, 709 (1999)

    Article  Google Scholar 

  • J.I. Pascual, N. Lorente, in SPM beyond imaging, edited by P. Samori (Wiley-VHC, Berlin, 2005)

  • N. Lorente, M. Persson, Faraday Discuss. 117, 277 (2000)

    Article  PubMed  Google Scholar 

  • N. Lorente, J.I. Pascual, Phil. Trans. R. Soc. 362, 1227 (2004)

    Article  Google Scholar 

  • N. Lorente, R. Rurali, H. Tang, J. Phys.: Condens. Matter 17, S1049 (2005)

  • Dacapo is freely downloadable from: http://www.fysik.dtu.dk/campos/ASE/

  • B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999)

    Article  Google Scholar 

  • D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  • J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  Google Scholar 

  • C.J. Hirschmugl, G.P. Williams, F.M. Hoffmann, Y.T. Chabal, Phys. Rev. Lett. 65, 480 (1990)

    Article  PubMed  Google Scholar 

  • It is interesting to note that the Cu(110) surface phonons are harder than the Ag(110) one, indicating a stronger Cu–Cu interaction than in the Ag case, because the mass difference does not account for the phonon top of band distance (21 meV for the longitudinal modes of Cu against 13.7 meV of Ag(110) [24])

  • G. Bracco, R. Tatarek, F. Tommasini, U. Linke, M. Persson, Phys. Rev. B 36, 2928 (1987)

    Article  Google Scholar 

  • S. Krause, C. Mariani, K.C. Prince, K. Horn, Surf. Sci. 138, 305 (1984)

    Article  Google Scholar 

  • L.D. Peterson, S.D. Kevan, J. Chem. Phys. 95, 8592 (1991)

    Article  Google Scholar 

  • J. Ahner, D. Mocuta, R.D. Ramsier, J.T. Yates, J. Chem. Phys. 105, 6553 (1996)

    Article  Google Scholar 

  • U. Burghaus, H. Conrad, Surf. Sci. 338, L869 (1995)

  • P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, J. Dumesic, J. Phys. Chem. B 105, 4018 (2001)

    Article  Google Scholar 

  • G. Kresse, A. Gil, P. Sautet, Phys. Rev. B 68, 073401 (2003)

    Article  Google Scholar 

  • R. Hoffman, Rev. Mod. Phys. 60, 601 (1988)

    Article  Google Scholar 

  • C. Blyholder, J. Phys. Chem. 68, 2772 (1964)

    Google Scholar 

  • Y. Morikawa, H. Ishii, K. Seki, Phys. Rev. B 69, 041403 (2004)

    Article  Google Scholar 

  • C.W. Bauschlicher, J. Chem. Phys. 101, 3250 (1994)

    Article  Google Scholar 

  • S.P. Lewis, A.M. Rappe, Phys. Rev. Lett. 77, 5241 (1996); S.P. Lewis, A.M. Rappe, J. Chem. Phys. 110, 4619 (1999)

    Article  PubMed  Google Scholar 

  • S.P. Lewis, M.V. Pykhtin, E.J. Mele, A.M. Rappe, J. Chem. Phys. 108, 1157 (1998)

    Article  Google Scholar 

  • D.P. Woodruff, B.E. Hayden, K. Prince, A.M. Bradshaw, Surf. Sci. 123, 397 (1982)

    Article  Google Scholar 

  • R.A. Pelak, W. Ho, Surf. Sci. 321, L233 (1994)

  • J. Braun, J. Weckesser, J. Ahner, D. Mocuta, J.T. Yates, Ch. Wöll, J. Chem. Phys. 108, 5161 (1998)

    Article  Google Scholar 

  • F. Hofmann, J.P. Toennies, Chem. Rev. 96, 1307 (1996)

    Article  PubMed  Google Scholar 

  • M. Head-Gordon, J.C. Tully, J. Chem. Phys. 96, 3939 (1992)

    Article  Google Scholar 

  • M. Persson, Phil. Trans. R. Soc. 362, 1173 (2004)

    Article  Google Scholar 

  • B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, Science 278, 257 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lorente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorente, N., Ueba, H. CO dynamics induced by tunneling electrons: differences on Cu(110) and Ag(110). Eur. Phys. J. D 35, 341–348 (2005). https://doi.org/10.1140/epjd/e2005-00214-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00214-6

Keywords

Navigation