Skip to main content
Log in

Tailoring the chemical reactivity and optical properties of clusters by size, structures and lasers

  • Chemical Reactivity, Nanocatalysis and Photochemistry Magnetism and Spintronics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We present results of theoretical investigations in three areas. I. Reactivity of anionic noble metal oxide clusters (Ag, Au) relevant for catalyst design: It will be shown that the cooperative effects are needed to activate clusters in order to invoke strongly size selective reactions with O2 and CO. These results obtained with DFT method elucidated fully experimental findings. II. Stationary optical properties of silver clusters: ab initio results on absorption spectra of small silver clusters and on geometric relaxation of their excited states leading to the observed fluorescence are presented and compared with experimental data. III. Real-time investigation of ultrafast processes and their control by tailored laser fields: nonstoichiometric NanFn-1 clusters are suitable prototypes to study dynamics in excited electronic states. For this purpose we use our combination of the Wigner distribution method and MD “on the fly” allowing to treat all degrees of freedom. Analysis of simulated pump-probe signals will be shown for Na2F for which experimental data are available. Pump-dump control of the photoisomerization in Na3F2 avoiding conical intersection will be presented using our new strategy for obtaining tailored laser fields based on the intermediate target in excited state which (if available) guarantees the controllability in the complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. Bonačić-Koutecký, P. Fantucci, J. Koutecký, Chem. Rev. 91, 1035 (1991)

    Google Scholar 

  • A.W. Castleman Jr, K.H. Bowen, J. Phys. Chem. 100, 12911 (1996)

    Google Scholar 

  • J. Jortner, Faraday Discuss. 108, 1 (1997)

    Google Scholar 

  • U. Landman, Int. J. Mod. Phys. B 6, 3623 (1992)

    Google Scholar 

  • M. Haruta, Catalysis Today 36, 153 (1997)

    Google Scholar 

  • A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999)

    Google Scholar 

  • W.T. Wallace, R.L. Whetten, J. Am. Chem. Soc. 124, 7499 (2002)

    Google Scholar 

  • A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  • A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Google Scholar 

  • C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  • J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Google Scholar 

  • W.T. Wallace, R.B. Wyrwas, R.L. Whetten, R. Mitrić, V. Bonačić-Koutecký, J. Am. Chem. Soc. 125, 8408 (2003)

    Google Scholar 

  • M.L. Kimble, A.W. Castleman Jr, R. Mitrić, C. Bürgel, V. Bonačić-Koutecký, J. Am. Chem. Soc. 126, 2526 (2004)

    Google Scholar 

  • J. Hagen, L.D. Socaciu, J. Le Roux, D. Popolan, T.M. Bernhardt, L. Wöste, R. Mitrić, H. Noack, V. Bonačić-Koutecký, J. Am. Chem. Soc. 126, 3442 (2004)

    Google Scholar 

  • B. Yoon, H. Häkkinen, U. Landman, J. Phys. Chem. A 107, 4066 (2003)

    Google Scholar 

  • L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003)

    Google Scholar 

  • A. Franceschettei, S.J. Pennycook, S.T. Pantelides, Chem. Phys. Lett. 374, 471 (2003)

    Google Scholar 

  • Q. Sun, P. Jena, Y.D. Kim, M. Fischer, G. Ganteför, J. Chem. Phys. 120, 6510 (2004)

    Google Scholar 

  • M.L. Kimble, A.W. Castleman Jr, C. Bürgel, R. Mitrić, V. Bonačić-Koutecký, J. Am. Chem. Soc. (submitted)

  • Note that the lowest energy structures of AgO2- and Ag3O4- contain dissociated oxygen (not shown), which requires considerable activation energy not available under experimental conditions involving molecular oxygen

  • L.A. Peyser, A.E. Vinson, A.P. Bartko, R.M. Dickson, Science 291, 103 (2001)

    Google Scholar 

  • L.A. Peyser, T.H. Lee, R.M. Dickson, J. Phys. Chem. B 106, 7725 (2002)

    Google Scholar 

  • T. Gleitsmann, B. Stegemann, T.M. Bernhardt, Appl. Phys. Lett. 84, 4050 (2004)

    Google Scholar 

  • V. Bonačić-Koutecký, J. Pittner, M. Boiron, P. Fantucci, J. Chem. Phys. 110, 3876 (1999)

    Google Scholar 

  • V. Bonačić-Koutecký, V. Veyret, R. Mitrić, J. Chem. Phys. 115, 10450 (2001)

    Google Scholar 

  • S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)

    Google Scholar 

  • C. Sieber, J. Buttet, W. Harbich, C. Félix, R. Mitrić, V. Bonačić-Koutecký, Phys. Rev. A 70, 041201 (2004)

    Google Scholar 

  • C. Félix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G. Ertl, Phys. Rev. Lett. 86, 2992, (2001)

    Google Scholar 

  • L. König, I. Rabin, W. Schulze, G. Ertl, Science 274, 1353 (1996)

    Google Scholar 

  • A.H. Zewail, Femtochemistry (World Scientific, Singapore, 1994)

  • Femtosecond Chemistry, edited by J. Manz, L. Wöste (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1995), Vols. 1 and 2

  • A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000)

    Google Scholar 

  • T. Brixner, G. Gerber, Chem. Phys. Chem. 4, 418 (2003)

    Google Scholar 

  • M. Hartmann, J. Pittner, V. Bonačić-Koutecký, A. Heidenreich, J. Jortner, J. Chem. Phys. 108, 3096 (1998)

    Google Scholar 

  • M. Hartmann, J. Pittner, V. Bonačić-Koutecký, J. Chem. Phys. 114, 2106 (2001)

    Google Scholar 

  • M. Hartmann, J. Pittner, V. Bonačić-Koutecký, J. Chem. Phys. 114, 2123 (2001)

    Google Scholar 

  • R. Mitrić, M. Hartmann, J. Pittner, V. Bonačić-Koutecký, J. Phys. Chem. A 106, 10477 (2002)

    Google Scholar 

  • A. Donoso, C.C. Martens, Phys. Rev. Lett. 87, 223202 (2001)

    Google Scholar 

  • V. Bonačić-Koutecký, J. Pittner, Chem. Phys. 225, 173 (1997)

    Google Scholar 

  • S. Vajda, C. Lupulescu, A. Merli, F. Budzyn, L. Wöste, M. Hartmann, J. Pittner, V. Bonačić-Koutecký, Phys. Rev. Lett. 89, 213404 (2002)

    Google Scholar 

  • M.C. Heitz, G. Durand, F. Spiegelman, C. Meier, J. Chem. Phys. 118, 1282 (2003)

    Google Scholar 

  • D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)

    Google Scholar 

  • M. Shapiro, P. Brumer, J. Chem. Phys. 84, 4103 (1986)

    Google Scholar 

  • J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986)

    Google Scholar 

  • R. Kosloff, S.A. Rice, P. Gaspard, S. Tersigni, D.J. Tannor, Chem. Phys. 139, 201 (1989)

    Google Scholar 

  • A.P. Peirce, M.A. Dahleh, H. Rabitz, Phys. Rev. A 37, 4950 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bonačić-Koutecký.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonačić-Koutecký, V., Mitrić, R., Bürgel, C. et al. Tailoring the chemical reactivity and optical properties of clusters by size, structures and lasers . Eur. Phys. J. D 34, 113–118 (2005). https://doi.org/10.1140/epjd/e2005-00098-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00098-4

Keywords

Navigation