Skip to main content
Log in

Smoothed Wigner functions: a tool to resolve semiclassical structures

  • Nonlinear Dynamics
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The Wigner and Husimi distributions are the usual phase space representations of a quantum state. The Wigner distribution has structures of order ħ2. On the other hand, the Husimi distribution is a Gaussian smearing of the Wigner function on an area of size ħ and then, it only displays structures of size ħ. We have developed a phase space representation which results a Gaussian smearing of the Wigner function on an area of size ħσ, with σ≥1. Within this representation, the Husimi and Wigner functions are recovered when σ=1 and \( \sigma \gtrsim 2 \) respectively. We treat the application of this intermediate representation to explore the semiclassical limit of quantum mechanics. In particular we show how this representation uncover semiclassical hyperbolic structures of chaotic eigenstates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, NY, 1990)

  • N.L. Balazs, B.K. Jennings, Phys. Rep. 104, 348 (1984)

    Google Scholar 

  • M.V. Berry, M. Tabor, J. Phys. A: Math. Gen. 10, 371 (1977)

    Google Scholar 

  • J.M. Tualle, A. Voros, Chaos Solitons, Fractals 5, 1085 (1995)

    Google Scholar 

  • W.H. Zurek, Nature 412, 712 (2001)

    Google Scholar 

  • Z.P. Karkuszewski, C. Jarzynski, W.H. Zurek, Phys. Rev. Lett. 89, 170405 (2002)

    Google Scholar 

  • D.A. Wisniacki, Phys. Rev. E 67, 016205 (2003)

    Google Scholar 

  • A.M.F. Rivas, A.M. Ozorio de Almeida, Nonlinearity 15, 681 (2002)

    Google Scholar 

  • K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1856 (1969); Phys. Rev. 177, 1969 (1969)

    Google Scholar 

  • J. Fiuráŝek, Phys. Rev. A 62, 013822 (2000)

    Google Scholar 

  • E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984)

    Google Scholar 

  • L. Kaplan, Nonlinearity 12, R1 (1999)

  • A.M.F. Rivas, in preparation

  • For example in the case of a particle of mass m moving with kinetic energy E in a stadium billiard, the perimeter of the boundary is the characteristic length when we use Birkhoff coordinates birk, while the characteristic momentum is given by \( \sqrt{2mE} \)

  • A.M. Ozorio de Almeida, Phys. Rep. 295, 265 (1998)

    Google Scholar 

  • A. Perelomov, Generalized Coherent States and their Applications (Springer, New York, 1986)

  • F.A. Berezin, Sov. Phys. Usp. 132, 497 (1980)

    Google Scholar 

  • V. Bargmann, Analytic methods in Mathematical Physics (Gordon and Breach, New York, 1970), Vol. 74

  • L.A. Bunimovich, Funct. Anal. Appl. 8, 254 (1974)

    Google Scholar 

  • A.G. Huibers et al., Phys. Rev. Lett. 83, 5090 (1999)

    Google Scholar 

  • M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)

    Article  Google Scholar 

  • Once the flow is studied through the collision map on the boundary. The place where the collision occurs and the incident angle are canonically conjugate coordinates called the Birkhoff coordinates

  • E.G. Vergini, J. Phys. A: Math. Gen. 33, 4709 (2000)

    Google Scholar 

  • E.G. Vergini, J. Phys. A: Math. Gen. 37, 6507 (2004)

    Google Scholar 

  • O. Brodier, A.M. Ozorio de Almeida, Phys. Rev. E 69, 016204 (2004)

    Google Scholar 

  • I. García-Mata, M. Saraceno, M.E. Spina, Phys. Rev. Lett. 91, 064101 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M.F. Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, A., Vergini, E. & Wisniacki, D. Smoothed Wigner functions: a tool to resolve semiclassical structures. Eur. Phys. J. D 32, 355–359 (2005). https://doi.org/10.1140/epjd/e2004-00189-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2004-00189-8

Keywords

Navigation