Skip to main content
Log in

Abstract.

Laser-microwave double resonance techniques applied to a cloud of a natural mixture of Eu + isotopes confined in a Penning trap has been used to induce and detect nuclear Zeeman transitions. In spite of the complex level structure of Eu + and overlapping spectra from the two isotopes five different \(\Delta m_I = 1\) transitions could be observed from which the nuclear magnetic moment can be derived. We obtain for 151 Eu + g I = 1.377 34(6) demonstrating the potential for high accuracy of the technique. The experiment can be considered as a feasibility test that precise spectroscopy data using the ion storage technique can be obtained of very complex ions and under unfavourable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Wineland et al., Phys. Rev. Lett. 50, 628 (1983)

    Article  Google Scholar 

  2. J.J. Bollinger et al., Bull. Am. Phys. Soc. 37(3), 1117 (1992)

    Google Scholar 

  3. G. Tommaseo et al., Eur. Phys. J. D 25, 113 (2003)

    Google Scholar 

  4. G. Marx et al., Eur. Phys. J. D 4, 279 (1998)

    Article  Google Scholar 

  5. W. Itano et al., J. Opt. Soc. Am. B 2, 1352 (1985)

    Google Scholar 

  6. J.J. Bollinger et al., Laser Spectroscopy VI, edited by H.P. Weber, W. Luthy (Springer Verlag, Heidelberg, 1983)

  7. O. Becker et al., Phys. Rev. A 48, 3546 (1993)

    Article  Google Scholar 

  8. K. Enders et al., Phys. Rev. A 52, 4434 (1995)

    Article  Google Scholar 

  9. K. Enders et al., Z. Phys. D 42, 171 (1997)

    Article  Google Scholar 

  10. K. Enders et al., Phys. Rev. A 56, 265 (1997)

    Article  Google Scholar 

  11. I. Klaft et al., Phys. Rev. Lett. 73, 2425 (1994)

    Article  Google Scholar 

  12. E. Rosenthal, G. Breit, Phys. Rev. 41, 459 (1932)

    Article  MATH  Google Scholar 

  13. A. Bohr, V.W. Weisskopf, Phys. Rev. 77, 94 (1958)

    Article  MATH  Google Scholar 

  14. P. Seelig et al., Phys. Rev. Lett. 81, 4824 (1998)

    Article  Google Scholar 

  15. T. Kühl et al., Nucl. Phys. A 626, 235 (1997)

    Article  Google Scholar 

  16. S. Büttgenbach, Hyperfine Structure in 4d- and 5d-Shell Atoms, Springer Tracts in Mod. Phys. (Springer, Berlin, 1982), Vol. 96

  17. P.A. Moskowitz, M. Lombardi, Phys. Lett. B 46, 334 (1973)

    Article  Google Scholar 

  18. S.A. Ahmad et al., Z. Phys. A 321, 35 (1985)

    Google Scholar 

  19. T. Asaga et al., Z. Phys. A 359, 237 (1997)

    Article  Google Scholar 

  20. D. Rostohar et al., Phys. Scripta 64, 237 (2001)

    Article  Google Scholar 

  21. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  Google Scholar 

  22. C. Lichtenberg et al., Eur. Phys. J. D 2, 29 (1998)

    Article  Google Scholar 

  23. L. Evans et al., Proc. Roy. Soc. A 289, 114 (1966)

    Google Scholar 

  24. H. Raimbault-Hartmann et al., Nucl. Instr. Meth. B 126, 378 (1997)

    Google Scholar 

  25. H.-D. Kronfeldt et al., Phys. Rev. A 44, 5737 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Werth.

Additional information

Received: 13 June 2003, Published online: 12 August 2003

PACS:

32.60. + i Zeeman and Stark effects - 32.10.Dk Electric and magnetic moments, polarizability

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trapp, S., Tommaseo, G., Revalde, G. et al. Ion trap nuclear resonance on \(\mathsf{^{151}Eu^ + }\) . Eur. Phys. J. D 26, 237–244 (2003). https://doi.org/10.1140/epjd/e2003-00261-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00261-y

Keywords

Navigation