Skip to main content
Log in

Hidden-charmonium decays of Z c (3900) and Z c (4025) in intermediate meson loops model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The BESIII collaboration reported an observation of two charged charmonium-like structure \(Z_{c}^{\pm}(3900)\) and \(Z_{c}^{\pm}(4025)\) in e + e →(J/ψπ)± π and \(e^{+}e^{-} \to(D^{*} \bar{ D}^{*})^{\pm} \pi^{\mp}\) at \(\sqrt{s} =4.26\) GeV recently, which could be an analogue of Z b (10610) and Z b (10650) claimed by the Belle Collaboration. In this work, we investigate the hidden-charmonium transitions of \(Z_{c}^{\pm}(3900)\) and \(Z_{c}^{\pm}(4025)\) via intermediate D (∗) D (∗) meson loops. Reasonable results for the branching ratios by taking appropriate values of α in this model can be obtained, which shows that the intermediate D (∗) D (∗) meson loops process may be a possible mechanism in these decays. Our results are consistent with the power-counting analysis, and comparable with the calculations in the framework of nonrelativistic effective field theory to some extent. We expect more experimental measurements on these hidden-charmonium decays and search for the decays of \(Z_{c}\to D\bar{D}^{*} +c.c\). and \(Z_{c}^{\prime}\to D^{*} \bar{D}^{*}\), which will help us investigate the \(Z_{c}^{(\prime)}\) decays deeply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 110, 252001 (2013). arXiv:1303.5949 [hep-ex]

    Article  ADS  Google Scholar 

  2. Z.Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013). arXiv:1304.0121 [hep-ex]

    Article  ADS  Google Scholar 

  3. T. Xiao, S. Dobbs, A. Tomaradze, K.K. Seth, arXiv:1304.3036 [hep-ex]

  4. M. Ablikim et al. (BESIII Collaboration), arXiv:1308.2760 [hep-ex]

  5. I. Adachi (Belle Collaboration), arXiv:1105.4583 [hep-ex]

  6. A. Bondar et al. (Belle Collaboration), Phys. Rev. Lett. 108, 122001 (2012). arXiv:1110.2251 [hep-ex]

    Article  ADS  Google Scholar 

  7. Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013). arXiv:1303.6355 [hep-ph]

    Article  ADS  Google Scholar 

  8. F.-K. Guo, C. Hidalgo-Duque, J. Nieves, M.P. Valderrama, Phys. Rev. D 88, 054007 (2013). arXiv:1303.6608 [hep-ph]

    Article  ADS  Google Scholar 

  9. D.-Y. Chen, X. Liu, T. Matsuki, Phys. Rev. Lett. 110, 232001 (2013). arXiv:1303.6842 [hep-ph]

    Article  ADS  Google Scholar 

  10. L. Maiani, V. Riquer, R. Faccini, F. Piccinini, A. Pilloni, A.D. Polosa, Phys. Rev. D 87, 111102 (2013). arXiv:1303.6857 [hep-ph]

    Article  ADS  Google Scholar 

  11. M.B. Voloshin, Phys. Rev. D 87, 091501 (2013). arXiv:1304.0380 [hep-ph]

    Article  ADS  Google Scholar 

  12. N. Mahajan, arXiv:1304.1301 [hep-ph]

  13. C.-Y. Cui, Y.-L. Liu, W.-B. Chen, M.-Q. Huang, arXiv:1304.1850 [hep-ph]

  14. E. Wilbring, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 726, 326 (2013). arXiv:1304.2882 [hep-ph]

    Article  ADS  Google Scholar 

  15. X.Q. Li, D.V. Bugg, B.S. Zou, Phys. Rev. D 55, 1421 (1997)

    Article  ADS  Google Scholar 

  16. Q. Zhao, B.S. Zou, Phys. Rev. D 74, 114025 (2006). arXiv:hep-ph/0606196

    Article  ADS  Google Scholar 

  17. Q. Zhao, Phys. Lett. B 636, 197 (2006). arXiv:hep-ph/0602216

    Article  ADS  Google Scholar 

  18. G. Li, Q. Zhao, Phys. Rev. D 84, 074005 (2011). arXiv:1107.2037 [hep-ph]

    Article  ADS  Google Scholar 

  19. G. Li, Q. Zhao, C.-H. Chang, J. Phys. G 35, 055002 (2008). hep-ph/0701020

    Article  Google Scholar 

  20. Q. Wang, G. Li, Q. Zhao, Phys. Rev. D 85, 074015 (2012). arXiv:1201.1681 [hep-ph]

    Article  ADS  Google Scholar 

  21. G. Li, Q. Zhao, Phys. Lett. B 670, 55 (2008). arXiv:0709.4639 [hep-ph]

    Article  ADS  Google Scholar 

  22. J.J. Wu, Q. Zhao, B.S. Zou, Phys. Rev. D 75, 114012 (2007). arXiv:0704.3652 [hep-ph]

    Article  ADS  Google Scholar 

  23. X. Liu, X.Q. Zeng, X.Q. Li, Phys. Rev. D 74, 074003 (2006). arXiv:hep-ph/0606191

    Article  ADS  Google Scholar 

  24. H.Y. Cheng, C.K. Chua, A. Soni, Phys. Rev. D 71, 014030 (2005). arXiv:hep-ph/0409317

    Article  ADS  Google Scholar 

  25. V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, B.S. Zou, Phys. Rev. D 51, 4619 (1995)

    Article  ADS  Google Scholar 

  26. Q. Zhao, B.s. Zou, Z.b. Ma, Phys. Lett. B 631, 22 (2005). arXiv:hep-ph/0508088

    Article  ADS  Google Scholar 

  27. G. Li, Q. Zhao, B.S. Zou, Phys. Rev. D 77, 014010 (2008). arXiv:0706.0384 [hep-ph]

    Article  ADS  Google Scholar 

  28. Y.J. Zhang, G. Li, Q. Zhao, Phys. Rev. Lett. 102, 172001 (2009). arXiv:0902.1300 [hep-ph]

    Article  ADS  Google Scholar 

  29. X.H. Liu, Q. Zhao, Phys. Rev. D 81, 014017 (2010). arXiv:0912.1508 [hep-ph]

    Article  ADS  Google Scholar 

  30. X.H. Liu, Q. Zhao, J. Phys. G 38, 035007 (2011). arXiv:1004.0496 [hep-ph]

    Article  ADS  Google Scholar 

  31. Q. Wang, X.-H. Liu, Q. Zhao, Phys. Lett. B 711, 364 (2012). arXiv:1202.3026 [hep-ph]

    Article  ADS  Google Scholar 

  32. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 82, 034025 (2010). arXiv:1002.2712 [hep-ph]

    Article  ADS  Google Scholar 

  33. F.K. Guo, C. Hanhart, G. Li, U.G. Meissner, Q. Zhao, Phys. Rev. D 83, 034013 (2011). arXiv:1008.3632 [hep-ph]

    Article  ADS  Google Scholar 

  34. C.-W. Zhao, G. Li, X.-H. Liu, F.-L. Shao, Eur. Phys. J. C 73, 2482 (2013)

    Article  ADS  Google Scholar 

  35. N. Brambilla, S. Eidelman, B.K. Heltsley, R. Vogt, G.T. Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011). arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  36. N. Brambilla et al. (Quarkonium Working Group Collaboration), hep-ph/0412158

  37. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). hep-ph/0410047

    Article  ADS  Google Scholar 

  38. C. Meng, K.T. Chao, Phys. Rev. D 77, 074003 (2008). arXiv:0712.3595 [hep-ph]

    Article  ADS  Google Scholar 

  39. C. Meng, K.T. Chao, Phys. Rev. D 78, 074001 (2008). arXiv:0806.3259 [hep-ph]

    Article  ADS  Google Scholar 

  40. Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, S.-L. Zhu, Phys. Rev. D 84, 054002 (2011). arXiv:1106.2968 [hep-ph]

    Article  ADS  Google Scholar 

  41. M. Cleven, Q. Wang, F.-K. Guo, C. Hanhart, U.-G. Meissner, Q. Zhao, arXiv:1301.6461 [hep-ph]

  42. G. Li, F.L. Shao, C.W. Zhao, Q. Zhao, Phys. Rev. D 87, 034020 (2013). arXiv:1212.3784 [hep-ph]

    Article  ADS  Google Scholar 

  43. P. Colangelo, F. De Fazio, T.N. Pham, Phys. Rev. D 69, 054023 (2004). arXiv:hep-ph/0310084

    Article  ADS  Google Scholar 

  44. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Rep. 281, 145 (1997). arXiv:hep-ph/9605342

    Article  ADS  Google Scholar 

  45. M.P. Locher, Y. Lu, B.S. Zou, Z. Phys. A 347, 281 (1994). nucl-th/9311021

    Article  ADS  Google Scholar 

  46. X.-Q. Li, B.-S. Zou, Phys. Lett. B 399, 297 (1997). hep-ph/9611223

    Article  ADS  Google Scholar 

  47. P. Colangelo, F. De Fazio, T.N. Pham, Phys. Lett. B 542, 71 (2002). hep-ph/0207061

    Article  ADS  Google Scholar 

  48. E.V. Veliev, H. Sundu, K. Azizi, M. Bayar, Phys. Rev. D 82, 056012 (2010). arXiv:1003.0119 [hep-ph]

    Article  ADS  Google Scholar 

  49. C. Isola, M. Ladisa, G. Nardulli, P. Santorelli, Phys. Rev. D 68, 114001 (2003). arXiv:hep-ph/0307367

    Article  ADS  Google Scholar 

  50. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  51. F.-K. Guo, C. Hanhart, U.-G. Meißner, Phys. Rev. Lett. 103, 082003 (2009). [Erratum-ibid. 104, 109901 (2010)]. arXiv:0907.0521 [hep-ph]

    Article  ADS  Google Scholar 

  52. F.-K. Guo, U.-G. Meißner, Phys. Rev. Lett. 109, 062001 (2012). arXiv:1203.1116 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author thanks F.-K. Guo, X.-H. Liu, Q. Wang and Q. Zhao for useful discussions. This work is supported, in part, by the National Natural Science Foundation of China (Grant No. 11275113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Appendices

Appendix A: The transition amplitude in ELA

In the following, we present the transition amplitudes for the intermediate meson loops listed in Figs. 1 and 2 in the framework of the ELA. Notice that the expressions are similar for the charged and neutral charmed mesons except that different charmed meson masses are applied. We thus only present the amplitudes for those charged charmed meson loops.

(i) \(Z_{c}^{(\prime) +} \to J/\psi\pi^{+}\) and ψπ +.

$$\begin{aligned} &{M_{DD^* [D]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4}[g_{Z_c^{(\prime)} D^*D} \varepsilon_{i\mu}] \bigl[g_{\psi DD} \varepsilon_f^{*\rho} (q_1-q_2)_\rho \bigr]} \\ &{\quad\phantom{=} \times [g_{D^*D\pi} p_{\pi\theta}] \times \frac{i}{q_1^2-m_1^2} \frac{i}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} \times\frac {i(-g^{\mu\theta} +q_3^\mu q_3^\theta/m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{DD^* [D^*]}} \\ &{\quad= (i)^3\int\frac{d^4q_2}{(2\pi)^4}[g_{Z_c^{(\prime)} D^*D} \varepsilon_{i\mu} ] \bigl[g_{\psi D^*D} \varepsilon_{\rho\sigma\xi\tau }p_f^\rho \varepsilon_f^{*\sigma} q_2^\xi \bigr]} \\ &{\quad\phantom{=} \times \bigl[-g_{D^*D^*\pi} \varepsilon_{\theta\phi\kappa\lambda} p_{\pi}^\kappa q_2^\lambda \bigr]} \\ &{\quad\phantom{=} \times\frac{i}{q_1^2-m_1^2} \frac{i(-g^{\tau\theta} +q_2^\tau q_2^\theta/m_2^2)}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} \times\frac{i(-g^{\mu\phi} +q_3^\mu q_3^\phi/m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D [D^*]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4}[g_{Z_c^{(\prime )} D^*D} \varepsilon_{i\mu}] \bigl[g_{\psi D^*D^*} (g_{\rho\sigma} g_{\xi\tau}} \\ &{\quad\phantom{=} {} - g_{\rho\tau} g_{\sigma\xi} + g_{\rho\xi} g_{\sigma\tau}) \varepsilon_f^{*\rho} (q_1+q_2)^\tau \bigr] [-g_{B^*B\pi} p_{\pi\theta}]} \\ &{\quad\phantom{=} {} \times\frac{i(-g^{\mu\xi} +q_1^\mu q_1^\xi/m_1^2)}{ q_1^2-m_1^2} \frac{i(-g^{\sigma\theta} +q_2^\sigma q_2^\theta/m_2^2)}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} {} \times\frac{i}{q_3^2-m_3^2} \prod _i\mathcal {F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D^* [D]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4} \bigl[g_{Z_c^{(\prime )} D^*D^*} \varepsilon_{\mu\nu\alpha\beta} q_i^\mu \varepsilon_{i}^\nu \bigr]} \\ &{\quad\phantom{=} {} \times \bigl[g_{\psi D^*D} \varepsilon_{\rho\sigma\xi\tau} p_f^\rho\varepsilon_f^{*\sigma} q_1^\xi \bigr] [g_{D^*D\pi} p_{\pi\theta}]} \\ &{\quad\phantom{=} {} \times\frac{i(-g^{\alpha\tau} +q_1^\alpha q_1^\tau/m_1^2)}{ q_1^2-m_1^2}} \\ &{\quad\phantom{=} {} \times\frac{i}{q_2^2-m_2^2} \frac{i(-g^{\beta\theta} +q_3^\beta q_3^\theta/m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal {F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D^* [D^*]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4} \bigl[g_{Z_c^{(\prime )} D^*D^*} \varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_{i}^\nu \bigr]} \\ &{\quad\phantom{=} {} \times \bigl[g_{\psi D^*D^*} (g_{\rho\sigma} g_{\xi\tau} - g_{\rho\tau} g_{\sigma\xi} + g_{\rho\xi} g_{\sigma\tau})} \\ &{\quad\phantom{=} {} \times \varepsilon_f^{*\rho} (q_1+q_2)^\tau \bigr] \bigl[-g_{D^*D^*\pi} \varepsilon_{\theta\phi\kappa\lambda} p_{\pi}^\kappa q_2^\lambda \bigr]} \\ &{\quad\phantom{=} {} \times\frac{i(-g^{\alpha\xi} +q_1^\alpha q_1^\xi/m_1^2)}{q_1^2-m_1^2} \frac {i(-g^{\sigma\theta} +q_2^\sigma q_2^\theta/m_2^2)}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} {} \times \frac{i(-g^{\beta\phi} +q_3^\beta q_3^\phi/m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr) .} \end{aligned}$$
(A.1)

(ii) \(Z_{c}^{(\prime) +}\to h_{c} \pi^{+}\).

$$\begin{aligned} &{M_{DD^* [D^*]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4}[g_{Z_c^{(\prime )} D^*D} \varepsilon_{i\mu} ] \bigl[g_{h_c D^*D} \varepsilon_{f\rho}^{*} \bigr]} \\ &{\quad\phantom{=} \times \bigl[-g_{D^*D^*\pi} \varepsilon_{\theta\phi\kappa\lambda} p_{\pi}^\kappa q_2^\lambda \bigr]} \\ &{\quad\phantom{=} \times\frac{i}{q_1^2-m_1^2} \frac{i(-g^{\rho\theta} +q_2^\rho q_2^\theta/m_2^2)}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} \times\frac{i(-g^{\mu\phi} +q_3^\mu q_3^\phi /m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D [D^*]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4}[g_{Z_c^{(\prime )} D^*D} \varepsilon_{i\mu}]} \\ &{\quad\phantom{=}\times \bigl[g_{h_c D^*D^*} \varepsilon_{\rho\sigma\xi \tau} p_f^\rho\varepsilon_f^{*\sigma} \bigr] [-g_{D^*D\pi} p_{\pi\theta} ]} \\ &{\quad\phantom{=}\times\frac{i(-g^{\mu\xi} +q_1^\mu q_1^\xi/m_1^2)}{q_1^2-m_1^2} \frac{i(-g^{\tau\theta} +q_2^\tau q_2^\theta/m_2^2)}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} \times\frac{i}{q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D^* [D]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4} \bigl[g_{Z_c^{(\prime )} D^*D^*} \varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_{0}^\nu \bigr] \bigl[g_{h_c D^*D} \varepsilon_{f\rho}^{*} \bigr]} \\ &{\quad\phantom{=}\times [g_{D^*D\pi} p_{\pi\theta}] \frac{i(-g^{\alpha\rho} +q_1^\alpha q_1^\rho/m_1^2)}{ q_1^2-m_1^2} \frac{i}{q_2^2-m_2^2}} \\ &{\quad\phantom{=} \times\frac{i(-g^{\beta\theta} +q_3^\beta q_3^\theta/m_3^2)}{q_3^2-m_3^2} \prod _i\mathcal {F}_i \bigl(m_i,q_i^2 \bigr),} \\ &{M_{D^*D^* [D^*]}} \\ &{\quad = (i)^3\int\frac{d^4q_2}{(2\pi)^4} \bigl[g_{Z_c^{(\prime )} D^*D^*} \varepsilon_{\mu\nu\alpha\beta} p_i^\mu \varepsilon_{i}^\nu \bigr]} \\ &{\quad\phantom{=}\times \bigl[g_{h_c D^*D^*} \varepsilon_{\rho\sigma\xi\tau} p_f^\rho\varepsilon_f^{*\sigma} \bigr] \bigl[-g_{D^*D^*\pi} \varepsilon_{\theta\phi\kappa\lambda} p_{\pi}^{\kappa} q_2^\lambda \bigr]} \\ &{\quad\phantom{=} \times\frac{i(-g^{\alpha\xi} +q_1^\alpha q_1^\xi/m_1^2)}{ q_1^2-m_1^2} \frac{i(-g^{\tau\theta} +q_2^\tau q_2^\theta/m_2^2)}{ q_2^2-m_2^2}} \\ &{\quad\phantom{=}\times \frac{i(-g^{\beta\phi} +q_3^\beta q_3^\phi/m_3^2)}{ q_3^2-m_3^2} \prod _i\mathcal{F}_i \bigl(m_i,q_i^2 \bigr),} \end{aligned}$$
(A.2)

where p i , p f , p π are the four-vector momenta of the initial \(Z_{c}^{(\prime)}\), final state charmonium and pion, respectively, and q 1, q 2, and q 3 are the four-vector momenta of the intermediate charmed mesons as defined in Figs. 1 and 2.

Appendix B: Amplitudes in NREFT approach

The basic three-point loop function worked out using dimensional regularization in d=4 is

$$\begin{aligned} &{I(q,m_1,m_2,m_3)} \\ &{\quad = \frac{-i}{8} \int\frac{d^d l}{(2\pi)^d} \frac{1}{ [l^0 - \frac{\vec{l}^2}{m_1}+i\epsilon]}} \\ &{\quad\phantom{=}\times \frac{1}{[l^0-b_{12}+ \frac{\vec{l}^2}{m_2}-i\epsilon]} \frac{1}{[l^0+b_{12}-b_{23}- \frac{(\vec{l}-\vec{q})^2}{m_2}+i\epsilon]}} \\ &{\quad= \frac{\mu_{12} \mu_{23}}{16\pi} \frac{1}{{\sqrt{2}}} \biggl[ \tan^{-1} \biggl( \frac{c^\prime-c}{2\sqrt{a(c-i\epsilon)}} \biggr)} \\ &{\quad\phantom{=} {} + \tan^{-1} \biggl(\frac {2a+c-c^\prime}{2\sqrt{a(c^\prime-a -i\epsilon)}} \biggr) \biggr],} \end{aligned}$$
(B.1)

where m i (i=1,2,3) are the masses of the particles in the loop; μ ij =m i m j /(m i +m j ) are the reduced masses; b 12=m 1+m 2M and b 23=m 2+m 3+q 0M with M being the mass of the initial particle; and

$$ \begin{aligned} &a= \biggl(\frac{\mu_{23}}{m_3}\biggr)^2 \vec{q}^2, \qquad c=2\mu_{12}b_{12},\\ & c^\prime= 2 \mu_{23} b_{23}+\frac{\mu_{23}}{m_3} \vec{q}^2. \end{aligned} $$
(B.2)

The vector loop integrals are defined as

$$\begin{aligned} q^iI^{(1)}(q,m_1,m_2,m_3) = \frac{-i}{8} \int\frac{d^d l}{(2\pi)^d} \frac{l^i}{[l^0 - \frac{\vec{l}^2}{m_1}+i\epsilon] [l^0-b_{12}+ \frac{\vec{l}^2}{m_2}-i\epsilon][l^0+b_{12}-b_{23}- \frac{(\vec {l}-\vec{q})^2}{m_2}+i\epsilon]} \end{aligned}$$
(B.3)

and we get

$$\begin{aligned} &{I^{(1)}(q,m_1,m_2,m_3)} \\ &{\quad = \frac{\mu_{23}}{am_3} \biggl[B\bigl(c^\prime-a\bigr) -B(c) + \frac{1}{2} \bigl(c^\prime-c\bigr) I(q)\biggr],} \end{aligned}$$
(B.4)

where the function B(c) is

$$ B(c)= -\frac{\mu_{12} {\mu_{23}} {\sqrt{c-i\epsilon} }}{16\pi}. $$
(B.5)

In terms of the loop functions given above, the transition amplitudes for the intermediate meson loops listed in Figs. 1 and 2 in the framework of NREFT,

(i) \(Z_{c}^{(\prime) +} \to J/\psi\pi^{+}\) and ψπ +.

$$\begin{aligned} &{\mathcal{M} \bigl(Z_c^{(\prime) +} \to \psi\pi^+ \bigr)} \\ &{\quad= -\frac{2{\sqrt{2}} g g_1z^{(\prime)}}{f_\pi} \sqrt{M_{Z_c^{(\prime)}} M_\psi} \bigl\{ \vec{q} \cdot\vec{\varepsilon }(Z_c) \vec{q} \cdot\vec{ \varepsilon}(\psi )} \\ &{\quad\phantom{=}\times \bigl[2I^{(1)}(q,M_{D^*},M_D,M_D)-I(q,M_{D^*},M_D,M_D)} \\ &{\quad\phantom{=}- 2I^{(1)}(q,M_{D^*},M_D,M_{D^*}) + I(q,M_{D^*},M_D,M_{D^*})} \\ &{\quad\phantom{=}+2I^{(1)}(q,M_{D^*},M_{D^*},M_D) -I(q,M_{D^*},M_{D^*},M_D)} \\ &{\quad\phantom{=}-2I^{(1)}(q,M_{D^*},M_{D^*},M_{D^*})} \\ &{\quad\phantom{=}+I(q,M_{D^*},M_{D^*},M_{D^*}) \bigr]} \\ &{\quad\phantom{=} +\vec{q}^2\vec{\varepsilon}(Z_c) \cdot\vec{ \varepsilon}(\psi) \bigl[2I^{(1)}(q,M_{D^*},M_D,M_{D^*})} \\ &{\quad\phantom{=}-I(q,M_{D^*},M_D,M_{D^*})+ 2I^{(1)}(q,M_D,M_{D^*},M_{D^*})} \\ &{\quad\phantom{=}-I(q,M_D,M_{D^*},M_{D^*})-2I^{(1)}(q,M_{D^*},M_{D^*},M_D)} \\ &{\quad\phantom{=} +I(q,M_{D^*},M_{D^*},M_D) - 2I^{(1)}(q,M_{D^*},M_{D^*},M_{D^*})} \\ &{\quad\phantom{=}+I(q,M_{D^*},M_{D^*},M_{D^*}) \bigr] \bigr\} .} \end{aligned}$$
(B.6)

(ii) \(Z_{c}^{(\prime) +} \to h_{c}\pi^{+}\).

$$\begin{aligned} &{\mathcal{M} \bigl(Z_c^{(\prime) +}\to h_c\pi^+ \bigr)} \\ &{\quad = \frac{2{\sqrt{2}}g g_1 z^{(\prime) }}{f_\pi} \sqrt{{M_{Z_c^{(\prime)}} {M_{h_c}}}} \epsilon ^{ijk} q^i \varepsilon^j(Z_c) \varepsilon^k(h_c)} \\ &{\quad\phantom{=}\times \bigl[I(q, M_D, M_{D^*},M_{D^*})+ I(q, M_{D^*}, M_D,M_{D^*})} \\ &{\quad\phantom{=} -I(q, M_{D^*}, M_{D^*},M_D)+I(q, M_{D^*}, M_{D^*},M_{D^*}) \bigr].} \end{aligned}$$
(B.7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G. Hidden-charmonium decays of Z c (3900) and Z c (4025) in intermediate meson loops model. Eur. Phys. J. C 73, 2621 (2013). https://doi.org/10.1140/epjc/s10052-013-2621-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2621-5

Keywords

Navigation