Skip to main content
Log in

Doubly charged Higgs from eγ scattering in the 3-3-1 Model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We studied the production and signatures of doubly charged Higgs bosons in the process γe H −− E +, where E + is a heavy lepton, at the e e + International Linear Collider (ILC) and CERN Linear Collider (CLIC). The intermediate photons are given by the Weizsäcker–Williams and laser-backscattering distributions. We found that significant signatures are obtained by bremsstrahlung and backward Compton scattering of laser. A clear signal can be obtained for doubly charged Higgs bosons, doubly charged gauge bosons and heavy leptons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  2. G.B. Gelmini, M. Roncadelli, Phys. Lett. B 99, 411 (1981)

    Article  ADS  Google Scholar 

  3. R.N. Mohapatra, R.E. Marshak, Phys. Lett. 91, 202 (1980)

    Google Scholar 

  4. R.N. Mohapatra, D. Sidhu, Phys. Rev. Lett. 38, 667 (1977)

    Article  ADS  Google Scholar 

  5. R.N. Mohapatra, G. Senjanovich, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  6. M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, ed. by P. van Niewenhuizen, D.Z. Friedman (North-Holland, Amsterdam, 1979)

    Google Scholar 

  7. T. Yanagida, in Proceedings of Workshop on Unified Theories and Baryon Number in the Universe, ed. by O. Swada, A. Sugamoto (KEK, Tsukuba, 1979)

    Google Scholar 

  8. The ATLAS Collaboration, Search for doubly charged Higgs boson production in like-sign muon pairs in pp collisions at \(\sqrt{s} = 7\mbox{ TeV}\). ATLAS-CONF-2011-127 (08/27/2011)

  9. The CMS Collaboration, Inclusive search for doubly charged Higgs bosons in leptonic final states at \(\sqrt{s} = 7\mbox{ TeV}\). CMS PAS HIG-11-007 (07/22/2011)

  10. F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992)

    Article  ADS  Google Scholar 

  11. R. Foot, O.F. Hernandez, F. Pisano, V. Pleitez, Phys. Rev. D 47, 4158 (1993)

    Article  ADS  Google Scholar 

  12. P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)

    Article  ADS  Google Scholar 

  13. V. Pleitez, M.D. Tonasse, Phys. Rev. D 48, 2353 (1993)

    Article  ADS  Google Scholar 

  14. A.G. Dias, Phys. Rev. D 71, 015009 (2005)

    Article  ADS  Google Scholar 

  15. C.-X. Yue, X.-S. Su, J. Zhang, J. Wang, arXiv:1010.4633 [hep-ph]

  16. S. Chakrabarti, D. Choudhury, R.M. Godbole, B. Mukhopadhyaya, Phys. Lett. B 434, 347 (1998)

    Article  ADS  Google Scholar 

  17. E.M. Gregores, A. Gusso, S.F. Novaes, Phys. Rev. D 64, 015004 (2001)

    Article  ADS  Google Scholar 

  18. S. Godfrey, P. Kalyniak, N. Romanenko, Phys. Rev. D 65, 033009 (2002)

    Article  ADS  Google Scholar 

  19. C.-X. Yue, S. Zhao, W. Ma, Nucl. Phys. B 784, 36 (2007)

    Article  ADS  Google Scholar 

  20. C.F. von Weizsäker, Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  21. E.J. Williams, Phys. Rev. 45, 729 (1934)

    Article  ADS  Google Scholar 

  22. I.F. Ginsburg et al., Nucl. Instrum. Methods Phys. Res. 205, 47 (1983); ibid. 219, 5 (1984)

    Article  ADS  Google Scholar 

  23. J.E. Cieza Montalvo, N.V. Cortez, J. Sá Borges, M.D. Tonasse, Nucl. Phys. B 756, 1 (2006)

    Article  ADS  Google Scholar 

  24. J.E. Cieza Montalvo, N.V. Cortez, M.D. Tonasse, Phys. Rev. D 76, 117703 (2007)

    Article  ADS  Google Scholar 

  25. M.D. Tonasse, Phys. Lett. B 381, 191 (1996)

    Article  ADS  Google Scholar 

  26. J.E. Cieza Montalvo, N.V. Cortez, M.D. Tonasse, Phys. Rev. D 78, 116003 (2008)

    Article  ADS  Google Scholar 

  27. J.E. Cieza Montalvo, N.V. Cortez, M.D. Tonasse, Phys. Rev. D 77, 095015 (2008)

    Article  ADS  Google Scholar 

  28. F. del Aguila, J.A. Aguilar-Saavedra, Nucl. Phys. B 813, 22 (2009)

    Article  ADS  MATH  Google Scholar 

  29. A.G. Akeroyd, C.-W. Chiang, N. Gaur, J. High Energy Phys. 1011, 005 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of us (J.E.C.M.) would like to thank to Prof. O.J.P. Éboli for the proposal of this work and to hospitality of the Departamento de Física Matemâtica-USP-Brazil, where part of this work was done and M.D.T. is beholden to Instituto de Física Teórica of the UNESP for his hospitality and to Conselho Nacional de Desenvolvimento Científico e Tecnológico for partial support. This work was supported by Fundação de Amparo à Pesquisa no Estado de São Paulo (Processo No. 2009/02272-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Ramírez Ulloa.

Additional information

On leave from Campus Experimental de Registro, Universidad Estadual Paulista, Rua Nelson Brihi Badur 430, 11900-000 Registro, SP, Brazil.

Appendix

Appendix

The spectrum of bremsstrahlung photons can be described by the well-known Weizsäcker–Willians distribution [20, 21]

$$f_{\gamma/e}^{WW} (x) = \frac{\alpha}{2\pi} \frac{1+ (1- x)^{2}}{x} \ln \frac{s}{4 m_{e}^{2}} , $$

where x is the longitudinal momentum fraction of the electron carried off by the photon, s is the center-of-mass energy of the e e + pair and m e is the electron mass. This spectrum is peaked at small x, i.e. most of its photons are soft.

Hard photons can be obtained by laser-backscattering, which converts an e beam into a γ one, that is, the scattering of an energetic electron by a soft photon from a laser allows the transformation of an electron beam into a photon beam. Here the intense photon beams is generated by backward Compton scattering of soft photons from a laser of a few eV energy. The energy spectrum of the backscattered laser photons is [22]

where σ c is the total Compton cross section. For the photons going in the direction of the initial electron, the fraction x represents the ratio between the scattered photon and the initial electron energy (x=ω/E). In writing the last equation, we defined

$$D(\xi) = \biggl(1- \frac{4}{\xi} -\frac{8}{\xi^{2}} \biggr) \ln(1+ \xi) + \frac{1}{2} +\frac{8}{\xi} -\frac{1}{2(1+ \xi)^{2}} , $$

with

$$\xi\equiv\frac{4E \omega_{0}}{m^{2}} \cos^{2} \frac{\alpha_{0}}{2} \simeq \frac{2 \sqrt{s} \omega_{0}}{m^{2}} . $$

m and E are the electron mass and energy, respectively, ω 0 is the laser photon energy, and (α 0∝0) is the electron–laser collision angle. It is easy to verify that the maximum value possible of x in this process is

$$x_m = \frac{\omega_m}{E} = \frac{\xi}{1+\xi} . $$

From the energy spectrum of the backscattered laser photons we can see that the fraction of photons with energy close to the maximum value grows with E and ω 0. Usually, the choice of ω 0 is such that it is not possible for the backscattered photon to interact with the laser and create e +e + pairs, otherwise the conversion of electrons to photons would be dramatically reduced. In our numerical calculations, we assumed ω 0≃1.26 eV, which is below the threshold of e +e + pair creation (ω m ω 0<m 2). Thus for the ILC beams (\(\sqrt{s} = 1000~\mbox{GeV}\)), we have ξ≃9.7, D(ξ)≃2.5, and x m ≃0.9. Therefore the laser-backscattering option offers the prospect of intense beams of real photons with an energy up to about 90 % of the e ± beam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieza Montalvo, J.E., Ramírez Ulloa, G.H. & Tonasse, M.D. Doubly charged Higgs from eγ scattering in the 3-3-1 Model. Eur. Phys. J. C 72, 2210 (2012). https://doi.org/10.1140/epjc/s10052-012-2210-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2210-z

Keywords

Navigation