Skip to main content
Log in

MSSM corrections to the top–antitop quark forward–backward asymmetry at the Tevatron

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the effects of the complete supersymmetric QCD and electroweak one-loop corrections to the \(t\bar{t}\) forward–backward asymmetry at the Fermilab Tevatron \(p\bar{p}\) collider. We work in the complex Minimal Supersymmetric Standard Model (MSSM), only restricted by the condition of minimal flavor violation (MFV). We perform a comprehensive scan over the relevant parameter space of the complex MFV–MSSM and determine the maximal possible contributions of these MSSM loop corrections to the forward–backward asymmetry in the \(t\bar{t}\) center-of-mass frame. We find that the SUSY loop-induced asymmetry at the Tevatron with \(M_{t\bar{t}}>450~\mbox{GeV}\) can be at most +2 % for very light SUSY particles, i.e. for \(m_{\tilde{t}_{1}} <100~\mbox{GeV}\) and \(m_{\min} = \mathrm{Min}\{ m_{\tilde{g}},m_{\tilde{u}_{1,2}},m_{\tilde{d}_{1,2}}\}<100~\mbox{GeV}\), which reduces to 0.1 % for gluino and squark masses in the range 850 GeV–1000 GeV and a light top squark of \(m_{\tilde{t}_{1}}=200~\mbox{GeV}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Aaltonen et al., Phys. Rev. Lett. 101, 202001 (2008). 0806.2472

    Article  ADS  Google Scholar 

  2. T. Aaltonen et al., Phys. Rev. D 83, 112003 (2011). 1101.0034

    Article  ADS  Google Scholar 

  3. The CDF Collaboration, CDF Note 10584 (July 2011)

  4. The CDF Collaboration, CDF Note 10807 (March, 2012)

  5. V.M. Abazov et al., Phys. Rev. Lett. 100, 142002 (2008). 0712.0851

    Article  ADS  Google Scholar 

  6. Abazov, V.M., et al., Phys. Rev. D 84, 112005 (2011). 1107.4995

    Article  ADS  Google Scholar 

  7. J.H. Kühn, G. Rodrigo, Phys. Rev. D 59, 054017 (1999). hep-ph/9807420

    Article  ADS  Google Scholar 

  8. J.H. Kühn, G. Rodrigo, Phys. Rev. Lett. 81, 49–52 (1998). hep-ph/9802268

    Article  ADS  Google Scholar 

  9. M.T. Bowen, S.D. Ellis, D. Rainwater, Phys. Rev. D 73, 014008 (2006). hep-ph/0509267

    Article  ADS  Google Scholar 

  10. O. Antunano, J.H. Kühn, G. Rodrigo, Phys. Rev. D 77, 014003 (2008). 0709.1652

    Article  ADS  Google Scholar 

  11. L.G. Almeida, G.F. Sterman, W. Vogelsang, Phys. Rev. D 78, 014008 (2008). 0805.1885

    Article  ADS  Google Scholar 

  12. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Phys. Rev. D 84, 074004 (2011). 1106.6051

    Article  ADS  Google Scholar 

  13. W. Hollik, D. Pagani, Phys. Rev. D 84, 093003 (2011). 1107.2606

    Article  ADS  Google Scholar 

  14. J.H. Kühn, G. Rodrigo, J. High Energy Phys. 01, 063 (2012). 1109.6830

    Article  Google Scholar 

  15. A.V. Manohar, M. Trott, 1201.3926 (2012)

  16. N. Kidonakis, Phys. Rev. D 84, 011504 (2011). 1105.5167

    Article  ADS  Google Scholar 

  17. J.F. Kamenik, J. Shu, J. Zupan, 1107.5257 (2011)

  18. S. Westhoff, 1108.3341 (2011)

  19. J.A. Aguilar-Saavedra, 1202.2382 (2012)

  20. Nilles, H.P., Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  21. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  22. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager, L. Silvestrini, Phys. Lett. B 500, 161–167 (2001). hep-ph/0007085

    Article  ADS  Google Scholar 

  23. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155–187 (2002). hep-ph/0207036

    Article  ADS  Google Scholar 

  24. C.-S. Li, B.-Q. Hu, J.-M. Yang, C.-G. Hu, Phys. Rev. D 52, 5014–5017 (1995)

    Article  ADS  Google Scholar 

  25. S. Alam, K. Hagiwara, S. Matsumoto, Phys. Rev. D 55, 1307–1315 (1997). hep-ph/9607466

    Article  ADS  Google Scholar 

  26. Z. Sullivan, Phys. Rev. D 56, 451–457 (1997). hep-ph/9611302

    Article  ADS  Google Scholar 

  27. H.-Y. Zhou, C.-S. Li, Phys. Rev. D 55, 4421–4429 (1997)

    Article  ADS  Google Scholar 

  28. Z.-H. Yu, H. Pietschmann, W.-G. Ma, L. Han, J. Yi, Eur. Phys. J. C 9, 463–477 (1999). hep-ph/9804331

    Article  ADS  Google Scholar 

  29. D. Wackeroth, hep-ph/9807558 (1998)

  30. S. Berge, W. Hollik, W.M. Mosle, D. Wackeroth, Phys. Rev. D 76, 034016 (2007). hep-ph/0703016

    Article  ADS  Google Scholar 

  31. D.A. Ross, M. Wiebusch, J. High Energy Phys. 11, 041 (2007). 0707.4402

    Article  ADS  Google Scholar 

  32. J.-M. Yang, C.-S. Li, Phys. Rev. D 52, 1541–1545 (1995)

    Article  ADS  Google Scholar 

  33. J.M. Yang, C.S. Li, Phys. Rev. D 54, 4380–4384 (1996). hep-ph/9603442

    Article  ADS  Google Scholar 

  34. J. Kim, J.L. Lopez, D.V. Nanopoulos, R. Rangarajan, Phys. Rev. D 54, 4364–4373 (1996). hep-ph/9605419

    Article  ADS  Google Scholar 

  35. W. Hollik, W.M. Mosle, D. Wackeroth, Nucl. Phys. B 516, 29–54 (1998). hep-ph/9706218

    Article  ADS  Google Scholar 

  36. A. Denner, H. Eck, O. Hahn, J. Küblbeck, Nucl. Phys. B 387, 467–484 (1992)

    Article  ADS  Google Scholar 

  37. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165–180 (1990)

    Article  ADS  Google Scholar 

  38. T. Hahn, Comput. Phys. Commun. 140, 418–431 (2001). hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  39. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54–68 (2002). hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  40. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  41. J.A.M. Vermaseren, math-ph/0010025 (2000)

  42. J. Pumplin et al., J. High Energy Phys. 07, 012 (2002). hep-ph/0201195

    Article  ADS  Google Scholar 

  43. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999). hep-ph/9807565

    Article  ADS  Google Scholar 

  44. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  45. S. Chatrchyan et al., Phys. Rev. Lett. 107, 221804 (2011). 1109.2352

    Article  ADS  Google Scholar 

  46. S. Chatrchyan et al., Phys. Rev. D 85, 012004 (2012). 1107.1279

    Article  ADS  Google Scholar 

  47. V. Khachatryan et al., Phys. Lett. B 698, 196–218 (2011). 1101.1628

    Article  ADS  Google Scholar 

  48. G. Aad et al., 1109.6572 (2011)

  49. G. Aad et al., Phys. Rev. D 85, 012006 (2012). 1109.6606

    Article  ADS  Google Scholar 

  50. G. Aad et al., Phys. Rev. Lett. 106, 131802 (2011). 1102.2357

    Article  ADS  Google Scholar 

  51. da Costa, J.B.G. et al., Phys. Lett. B 701, 186–203 (2011). 1102.5290

    Article  ADS  Google Scholar 

  52. L.D. Landau, Nucl. Phys. 13, 181–192 (1959)

    Article  MATH  Google Scholar 

  53. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  54. http://hepsource.sf.net/dvegas

  55. N. Kauer, D. Zeppenfeld, Phys. Rev. D 65, 014021 (2002). hep-ph/0107181

    Article  ADS  Google Scholar 

  56. N. Kauer, Phys. Rev. D 67, 054013 (2003). hep-ph/0212091

    Article  ADS  Google Scholar 

  57. O. Brein, Comput. Phys. Commun. 170, 42–48 (2005). hep-ph/0407340

    Article  ADS  Google Scholar 

  58. S.A. Koay (CMS Collaboration), 1202.1000 (2012)

  59. M. Fehling-Kaschek (ATLAS Collaboration), Supersymmetry searches at atlas. Technical Report ATL-PHYS-PROC-2012-039, CERN, Geneva, Feb. 2012

  60. G. Aad et al., J. High Energy Phys. 11, 099 (2011). 1110.2299

    Article  ADS  Google Scholar 

  61. ATLAS Collaboration, Search for supersymmetry in pp 1 collisions at sqrt(s)=7 TeV in final states with missing transverse momentum, b-jets and one lepton with the atlas detector. Technical Report ATLAS-CONF-2011-130, CERN, Geneva, Sep. 2011

  62. G. Aad et al., Phys. Lett. B 701, 1–19 (2011). 1103.1984

    Article  ADS  Google Scholar 

  63. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., J. High Energy Phys. 0702, 047 (2007). hep-ph/0611326

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of S.B. is supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101 (‘Physics at the Terascale’) and by the Research Center ‘Elementary Forces and Mathematical Foundations’ of the Johannes-Gutenberg-Universität Mainz. The work of D.W. is supported by the National Science Foundation under grant No. NSF-PHY-0547564 and No. NSF-PHY-0757691. The work of M.W. is partially supported by project DFG NI 1105/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Berge.

Appendix

Appendix

1.1 A.1 Gluino–squark–quark couplings

The gluino–squark–quark couplings as defined in Eq. (7) are [39]

(A.1)
(A.2)

The index i and j have been omitted in the definition of \(g_{n}^{\pm}\) of Eq. (A.1) to avoid large chains of indices in Sect. 2. The index i always refers to the squark index of flavor q={u,d,s,c,b} of the vertices Γ 1 and Γ 2 and the index j always refers to the stop quark index of Γ 3 and Γ 4. The complex phase of the gluino mass M 3 is denoted by ϕ. The couplings are related by

$$\hat{g}_{2}^{\pm}=\hat{g}_{1}^{\mp*} ,\qquad\hat{g}_{3}^{\pm}=\hat{g}_{4}^{\mp*}. $$

The unitary squark mixing matrices are given as

(A.3)

For the squark mass and mixing matrices we use the conventions of Ref. [39].

1.2 A.2 Neutralino–squark–quark couplings

For the neutralino–squark–quark couplings, we again follow the notation of Ref. [39], where explicit expressions for these couplings can be found. For completeness, since the \(u\bar{u}\)-channel is the dominant \(t\bar{t}\) production process, we provide here the neutralino–up-quark-squark coupling, which reads with the restriction m u =0 GeV [39]

(A.4)
(A.5)

where we used the shorthand notations c W =cosθ W , s W =sinθ W and s β =sinβ with \(\tan\beta=\frac{v_{u}}{v_{d}}\) the ratio of the two Higgs field vacuum expectation values. Here the coupling parameters are related by

$$g_{2}^{\pm}=g_{1}^{\mp*},\qquad g_{3}^{\pm}=g_{4}^{\mp*}. $$

The neutralino mass matrices in the used convention have been taken from Ref. [63].

1.3 A.3 Analytic expressions for the one-loop functions D a

The partonic differential cross section \(\frac{d\hat{\sigma}^{(a,b)}}{d\cos\theta}\) for the direct box diagrams of Fig. 1(a) and crossed box of Fig. 1(b) are given in Eq. (8) and Eq. (10), respectively, in terms of coupling parameters and loop functions D a. Neglecting the initial-state quark masses and using the mass assignments of Fig. 1, the functions \(D^{a}(\hat{s},\cos\theta)\) are given with \(\hat{t}=m_{t}^{2}-\frac{\hat{s}}{2} (1-\beta_{t}\cos\theta )\) as

(A.6)

where \(D_{i,ij}=D_{i,ij} (0,m_{t}^{2},m_{t}^{2},0,\hat{t},\hat{s},m_{1}^{2},m_{2}^{2},m_{3}^{2},m_{4}^{2} )\) are written in the convention of Ref. [43]. From these expressions the contribution to Fig. 1(b) can be obtained by replacing \(D^{a}(\hat{s},\cos\theta)\to D^{a}(\hat{s},-\cos\theta)\) and multiplying by a factor of (−1) for exchanging the final-state fermions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berge, S., Wackeroth, D. & Wiebusch, M. MSSM corrections to the top–antitop quark forward–backward asymmetry at the Tevatron. Eur. Phys. J. C 72, 2114 (2012). https://doi.org/10.1140/epjc/s10052-012-2114-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2114-y

Keywords

Navigation