Skip to main content
Log in

Chargino decays in the complex MSSM: a full one-loop analysis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We evaluate two-body decay modes of charginos in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we take into account all decay channels involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED radiation. Special attention is paid to decays involving the Lightest Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or charged Higgs boson. The higher-order corrections of the chargino decay widths involving the LSP can easily reach a level of about ±10%, while the corrections to the decays to Higgs bosons are slightly smaller, translating into corrections of similar size in the respective branching ratios. These corrections are important for the correct interpretation of LSP and Higgs production at the LHC and at a future linear e + e collider. The results will be implemented into the Fortran code FeynHiggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  2. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  3. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)

    Google Scholar 

  4. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  5. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  6. A. Pilaftsis, Phys. Rev. D 58, 096010 (1998). arXiv:hep-ph/9803297

    Article  ADS  Google Scholar 

  7. A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373

    Article  ADS  Google Scholar 

  8. A. Pilaftsis, C. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371

    Article  ADS  Google Scholar 

  9. S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059

    Article  ADS  Google Scholar 

  10. G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512

  11. G. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    Article  ADS  Google Scholar 

  12. TESLA Technical Design Report (TESLA Collaboration) Part 3, Physics at an e + e Linear Collider, arXiv:hep-ph/0106315, see: http://tesla.desy.de/new_pages/TDR_CD/start.html

  13. J. Brau et al. (ILC Collaboration), ILC reference design report volume 1—Executive summary. arXiv:0712.1950 [physics.acc-ph]

  14. G. Aarons et al. (ILC Collaboration), International Linear Collider reference design report volume 2: Physics at the ILC. arXiv:0709.1893 [hep-ph]

  15. E. Accomando et al., (CLIC Physics Working Group Collaboration), arXiv:hep-ph/0412251

  16. G. Weiglein et al. (LHC/ILC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364

    Article  ADS  Google Scholar 

  17. A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph]

    Article  ADS  Google Scholar 

  18. A. De Roeck, J. Ellis, S. Heinemeyer, CERN Cour. 49N10, 27 (2009)

    Google Scholar 

  19. S. AbdusSalam et al., arXiv:1109.3859 [hep-ph]

  20. J.F. Gunion, H.E. Haber, R.M. Barnett, M. Drees, D. Karatas, X. Tata, H. Baer, Int. J. Mod. Phys. A 2, 1145 (1987)

    Article  ADS  Google Scholar 

  21. H. Baer, A. Bartl, D. Karatas, W. Majerotto, X. Tata, Int. J. Mod. Phys. A 4, 4111 (1989)

    Article  ADS  Google Scholar 

  22. J. Gunion, H. Haber, Phys. Rev. D 37, 2515 (1988)

    Article  ADS  Google Scholar 

  23. J. Gunion, H. Haber, Nucl. Phys. B 307, 445 (1988)

    Article  ADS  Google Scholar 

  24. R. Zhang, W. Ma, L. Wan, J. Phys. G 28, 169 (2002). arXiv:hep-ph/0111124

    Article  ADS  Google Scholar 

  25. P.-J. Zhou, W.-G. Ma, R.-Y. Zhang, L.-H. Wan, Commun. Theor. Phys. 38, 173 (2002)

    Google Scholar 

  26. A. Djouadi, Y. Mambrini, M. Mühlleitner, Eur. Phys. J. C 20, 563 (2001). arXiv:hep-ph/0104115

    Article  ADS  Google Scholar 

  27. K. Rolbiecki, arXiv:0710.1748 [hep-ph]

  28. N. Baro, F. Boudjema, Phys. Rev. D 80, 076010 (2009). arXiv:0906.1665 [hep-ph]

    Article  ADS  Google Scholar 

  29. J. Fujimoto, T. Ishikawa, Y. Kurihara, M. Jimbo, T. Kon, M. Kuroda, Phys. Rev. D 75, 113002 (2007)

    Article  ADS  Google Scholar 

  30. M. Mühlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  31. S. Liebler, W. Porod, Nucl. Phys. B 849, 213 (2011). Erratum-ibid. B 856, 125 (2012). arXiv:1011.6163 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  32. W. Yang, D. Du, Phys. Rev. D 67, 055004 (2003). arXiv:hep-ph/0211453

    Article  ADS  Google Scholar 

  33. H. Eberl, T. Gajdosik, W. Majerotto, B. Schrausser, Phys. Lett. B 618, 171 (2005). arXiv:hep-ph/0502112

    Article  ADS  Google Scholar 

  34. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320; see www.feynhiggs.de

    Article  ADS  MATH  Google Scholar 

  35. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  36. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  37. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  38. T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, arXiv:1111.7289 [hep-ph]

  39. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300 (2007). arXiv:0705.0746 [hep-ph]

    Article  ADS  Google Scholar 

  40. S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82, 075010 (2010). arXiv:1007.0689 [hep-ph]

    Article  ADS  Google Scholar 

  41. S. Heinemeyer, H. Rzehak, C. Schappacher, PoSCHARGED 2010, 039 (2010). arXiv:1012.4572 [hep-ph]

    Google Scholar 

  42. A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod, Y. Yamada, Phys. Rev. D 59, 115007 (1999). arXiv:hep-ph/9806299

    Article  ADS  Google Scholar 

  43. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. Lett. 78, 3626 (1997). arXiv:hep-ph/9612363

    Article  ADS  Google Scholar 

  44. A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. D 57, 4179 (1998). arXiv:hep-ph/9710438

    Article  ADS  Google Scholar 

  45. W. Hollik, H. Rzehak, Eur. Phys. J. C 32, 127 (2003). arXiv:hep-ph/0305328

    Article  ADS  Google Scholar 

  46. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114

    Article  ADS  Google Scholar 

  47. R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  48. R. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977)

    Article  ADS  Google Scholar 

  49. S. Dimopoulos, S. Thomas, Nucl. Phys. B 465, 23 (1996). arXiv:hep-ph/9510220

    Article  ADS  Google Scholar 

  50. D. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389

    Article  ADS  Google Scholar 

  51. M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245

    Article  ADS  Google Scholar 

  52. A. Fowler, PhD thesis, Durham University, UK, September 2010

  53. T. Fritzsche, Berechnung von Observablen zur supersymmetrischen Teilchenerzeugung an Hochenergie-Collidern unter Einschluß höheren Ordnungen (Cuvillier, Göttingen, 2005). ISBN 3-86537-577-4

    Google Scholar 

  54. T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002). arXiv:hep-ph/0203159

    Article  Google Scholar 

  55. T. Fritzsche, Diploma thesis, Institut für Theoretische Physik, Universität, Karlsruhe, Germany, 2000. See: www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml

  56. A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, arXiv:1107.5218 [hep-ph]

  57. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  ADS  Google Scholar 

  58. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  59. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349. The program, the user’s guide and the MSSM model files are available via www.feynarts.de

    Article  ADS  MATH  Google Scholar 

  60. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  61. F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561 (1999). arXiv:hep-ph/9806451

    Article  ADS  MATH  Google Scholar 

  62. W. Siegel, Phys. Lett. B 84, 193 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  63. D. Capper, D. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980)

    Article  ADS  Google Scholar 

  64. D. Stöckinger, J. High Energy Phys. 0503, 076 (2005). arXiv:hep-ph/0503129

    Article  ADS  Google Scholar 

  65. W. Hollik, D. Stöckinger, Phys. Lett. B 634, 63 (2006). arXiv:hep-ph/0509298

    Article  ADS  Google Scholar 

  66. A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph]

    Google Scholar 

  67. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  68. M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B 255, 413 (1985)

    Article  ADS  Google Scholar 

  69. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 416, 345 (1998). arXiv:hep-ph/9707437

    Article  ADS  Google Scholar 

  70. W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 425, 322 (1998). arXiv:hep-ph/9711322

    Article  ADS  Google Scholar 

  71. D. Demir, O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314

    Article  ADS  Google Scholar 

  72. D. Chang, W. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999). Erratum-ibid. 83, 3972 (1999). arXiv:hep-ph/9811202

    Article  ADS  Google Scholar 

  73. A. Pilaftsis, Phys. Lett. B 471, 174 (1999). arXiv:hep-ph/9909485

    Article  ADS  Google Scholar 

  74. O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Phys. Rev. D 70, 016003 (2004). arXiv:hep-ph/0402023

    Article  ADS  Google Scholar 

  75. Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 1008, 062 (2010). arXiv:1006.1440 [hep-ph]

    Article  ADS  Google Scholar 

  76. V. Barger, T. Falk, T. Han, J. Jiang, T. Li, T. Plehn, Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106

    Article  ADS  Google Scholar 

  77. (The Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008

    Article  Google Scholar 

  78. G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  79. D. Stöckinger, J. Phys. G 34, R45 (2007). arXiv:hep-ph/0609168

    Article  ADS  Google Scholar 

  80. J. Miller, E. de Rafael, B. Roberts, Rep. Prog. Phys. 70, 795 (2007). arXiv:hep-ph/0703049

    Article  ADS  Google Scholar 

  81. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph]

    Article  ADS  Google Scholar 

  82. J. Prades, Acta Phys. Pol. B, Proc. Suppl. 3, 75 (2010). arXiv:0909.2546 [hep-ph]

    Google Scholar 

  83. T. Teubner, K. Hagiwara, R. Liao, A. Martin, D. Nomura, arXiv:1001.5401 [hep-ph]

  84. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011). arXiv:1105.3149 [hep-ph]

    Article  ADS  Google Scholar 

  85. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 [hep-ph]

    Article  ADS  Google Scholar 

  86. LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  87. LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  88. H. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A. Weber, G. Weiglein, Eur. Phys. J. C 62, 547 (2009). arXiv:0901.3485 [hep-ph]

    Article  ADS  Google Scholar 

  89. T. Blank, W. Hollik, Nucl. Phys. B 514, 113 (1998). arXiv:hep-ph/9703392

    Article  ADS  Google Scholar 

  90. W. Öller, H. Eberl, W. Majerotto, Phys. Rev. D 71, 115002 (2005). arXiv:hep-ph/0504109

    Article  ADS  Google Scholar 

  91. M. Diaz, M. Rivera, D. Ross, J. High Energy Phys. 1004, 098 (2010). arXiv:0911.4403 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. von der Pahlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemeyer, S., von der Pahlen, F. & Schappacher, C. Chargino decays in the complex MSSM: a full one-loop analysis. Eur. Phys. J. C 72, 1892 (2012). https://doi.org/10.1140/epjc/s10052-012-1892-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1892-6

Keywords

Navigation