Skip to main content
Log in

Third-order nonlinear susceptibility in \({\text{CdS/Cd}}_{{x_{1} }} {\text{Zn}}_{{1 - x_{1} }} {\text{S/ ZnS}}\) multilayer spherical quantum dot

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the current work, a nano-scale structure based on spherical quantum dot (QD) is proposed to enhance the third-order nonlinear susceptibility. This nanocomposite contains spherical defect in QD. The effective mass equation is used to calculate the energy levels and Eigen states of the introduced system while the density matrix method is hired to evaluate the optical properties. The structural parameters such as defect and dot influence energy eigenvalues, dipole transition matrix elements and optical nonlinear susceptibility. Our findings have shown that this semiconductor structure has high nonlinear susceptibilities appropriate for application in optical devices. It has been indicated the peaks of QEOE (near w = w0) and TGH (near ω = ω0/3 and ω = ω0) are shifted and their magnitudes are strongly dependent on the core radius, well width and mole fraction. The structure parameters QDs can manage the amplitude and resonance frequency of the nonlinear third-order susceptibilities.

Graphical abstract

In this work, a nano-scale structure based on spherical quantum dot (QD) is proposed to enhance the third-order nonlinear susceptibilities. This nanocomposite contains spherical defect in QD. Complete analysis of the proposed structure is done based on the effective mass equation and optical nonlinear properties are examined using density matrix method. Effects of structure parameters including defect and dot on energy levels, dipole transition matrix elements (DTMEs) and optical nonlinearity are investigated. The results have shown that the introduced structures have high nonlinear and tunable nonlinear susceptibilities appropriate for application in optical devices. The third-order susceptibilities are increased near two to five orders of magnitudes compared traditional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.F. Mousavi, R. Nouroozi, J. Opt. 22, 075801 (2020)

    Article  ADS  Google Scholar 

  2. H. Hu, J. Zhang, S.A. Maier, Y. Luo, ACS Photon. 5, 592 (2018)

    Article  Google Scholar 

  3. R.W. Boyd, Nonlinear optics, 3rd edn. (Academic Press, Oxford, 2008)

    Google Scholar 

  4. U. Simon, F.K. Tittel, Nonlinear optical frequency conversion techniques in atomic, molecular and optical physics: electromagnetic radiation, in Experimental Methods in the Physical Sciences 29. ed. by R. Celotta, R.G. Hulet, F.B. Dunning (Academic Press, New York, 1997), p.231

    Google Scholar 

  5. T.Y.F. Tsang, Phys. Rev. A 52, 4116 (1995)

    Article  ADS  Google Scholar 

  6. G. Grinblat, Y. Li, M.P. Nielsen, R.F. Oulton, S.A. Maier, Nano Lett. 16, 4635 (2016)

    Article  ADS  Google Scholar 

  7. M.R. Shcherbakov, D.N. Neshev, B. Hopkins, A.S. Shorokhov, I. Staude, E.V. Melik-Gaykazyan, M. Decker, A.A. Ezhov, A.E. Miroshnichenko, I. Brener, A.A. Fedyanin, Y.S. Kivshar, Nano Lett. 14, 6488 (2014)

    Article  ADS  Google Scholar 

  8. J. Reinhold, M.R. Shcherbakov, A. Chipouline, V.I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E.B. Kley, A. Tünnermann, A.A. Fedyanin, T. Pertsch, Phys. Rev. B 86, 115401 (2012)

    Article  ADS  Google Scholar 

  9. G. Yi, H. Lee, J. Jiannan, B.J. Chun, S. Han, H. Kim, Y.W. Kim, D. Kim, Y.-J. Kimi, S. Kim, Opt. Express 25, 21 (2017)

    Google Scholar 

  10. M.J. Gunning, R.E. Raab, W. Kucharczyk, J. Opt. Soc. Am. B 18, 8 (2001)

    Article  Google Scholar 

  11. P. Chen, D.G. Zhao, Y.H. Zuo, D.S. Jiang, Z.S. Liu, Q.M. Wang, App. Phys. Lett. 100, 161901 (2012)

    Article  ADS  Google Scholar 

  12. E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardin, C.A. Duque, Phys. B 524, 64 (2017)

    Article  ADS  Google Scholar 

  13. E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, C.A. Duque, Phys. E 119, 114011 (2020)

    Article  Google Scholar 

  14. C. Heyn, C.A. Duque, Sci. Rep. 10, 9155 (2020)

    Article  ADS  Google Scholar 

  15. A. Vahedia, M. Koohia, A. Rostami, Optik 124, 6669 (2013)

    Article  ADS  Google Scholar 

  16. F. Kajzar, G.K. Sujan, Organic Conductors and Semiconductors, Optical Properties of in Reference Module in Materials Science and Materials Engineering (ELSEVIER) (2016)

  17. R. Rajkumar, P.P. Kumar, J. Mol. Struct. 1179, 108 (2019)

    Article  ADS  Google Scholar 

  18. S. Marqus, H. Ahmed, M. Ahmed, Xu. Ch, A.R. Rezk, L.Y. Yeo, A.C.S. Appl, Nano Mater. 1, 2503 (2018)

    Google Scholar 

  19. T. Yuan, T. Meng, P. He, Y.X. Shi, Y. Li, X. Li, L. Fan, S. Yang, J. Mater. Chem. C 7, 6820 (2019)

    Article  Google Scholar 

  20. L. Hu, S. Huang, R. Patterson, J.E. Halpert, J. Mater. Chem. C 7, 4497 (2019)

    Article  Google Scholar 

  21. Y. Liu, F. Dai, R. Zhao, X. Huai, J. Han, L. Wang, J. Mater. Sci. 54, 8571 (2019)

    Article  ADS  Google Scholar 

  22. K. Hasanirokh, A. Asgari, S. Mohammadi, J. Eur. Opt. Soc. Rap Publ. 17, 26 (2021)

    Article  Google Scholar 

  23. K. Hasanirokh, A. Asgari, M.M. Rokhi, Optik 188, 99 (2019)

    Article  ADS  Google Scholar 

  24. N. Üzar, M.Ç. Arikan, Bull. Mater. Sci. 34, 287 (2011)

    Article  Google Scholar 

  25. L. Qian, Y. Yixing, H. Changfeng, Ch. Ch Yuanyuan, L.Z. Ting, X. Wei, Mat. Sci. Eng B 193, 1 (2015)

    Article  Google Scholar 

  26. I.-H. Choi, P.Y. Yu, Phys. Stat. Sol. (b) 242, 1610 (2005)

    Article  ADS  Google Scholar 

  27. S. Suresh, Appl Nanosci 4, 325 (2014)

    Article  ADS  Google Scholar 

  28. N.M. Ushakov, I.D. Kosobudsky, Semiconductors 53, 2162 (2019)

    Article  ADS  Google Scholar 

  29. H.H. Li, J. Phys. Chem. 103 (1984)

  30. G.B. Arfken, H.J. Weber, Mathematical methods for physicists, 5th edn. (Academic Press, San Diego Harcourt, 2001)

    MATH  Google Scholar 

  31. Y.R. Shen, The principles of nonlinear optics (Wiley, New York, 2003)

    MATH  Google Scholar 

  32. R.W. Boyd, Nonlinear optics (Academic Press, New York, 1992)

    Google Scholar 

  33. K.X. Guo, Y.B. Yu, Chin. J. Phys. 43(5), 932 (2005)

    Google Scholar 

  34. M. Choubani, H. Maaref, F. Saidi, J. Nanotechnol. Smart Mater. 7, 101 (2021)

    Google Scholar 

  35. M. Choubani, H. Maaref, F. Saidi, J. Phys. Chem. Solid 138, 109226 (2020)

    Article  Google Scholar 

  36. R.I. Woodward, R.T. Murray, C.F. Phelan, R.E.P. de Oliveira, T.H. Runcorn, E.J.R. Kelleher, S. Li, E.C. de Oliveira, G.J.M. Fechine, G. Eda, C.J.S. de Matos, 2D Mater. 4, 011006 (2017)

    Article  Google Scholar 

  37. X.L. Liu, F. Nan, Y.H. Qiu, D.J. Yang, S.J. Ding, Q.Q. Wang, J. Phys. Chem. C. (2014). https://doi.org/10.1021/acs.jpcc.7b07801

    Article  Google Scholar 

  38. M.P. Fischer, A. Riede, K. Gallacher, J. Frigerio, G. Pellegrini, M. Ortolani, D.J. Paul, G. Isella, A. Leitenstorfer, P. Biagioni, D. Brida, Light Sci. Appl. 7, 106 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KH carried out the calculation and wrote the manuscript. LHA analyzed the calculation and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kobra Hasanirokh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest to disclose .The authors have not received any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanirokh, K., Abbud, L.H. Third-order nonlinear susceptibility in \({\text{CdS/Cd}}_{{x_{1} }} {\text{Zn}}_{{1 - x_{1} }} {\text{S/ ZnS}}\) multilayer spherical quantum dot. Eur. Phys. J. B 96, 5 (2023). https://doi.org/10.1140/epjb/s10051-022-00464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00464-0

Navigation