Skip to main content
Log in

Effect of the nearest-neighbor biquadratic interactions on the spin-1 Nagle–Kardar model

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effect of the nearest-neighbor biquadratic interactions on the one-dimensional Nagle–Kardar model and study how the interactions affect the the global phase diagram of this generalized model. For the system given in this paper, the mean-field ferromagnetic interactions of strength J competes with the nearest-neighbor interactions of strength K and the biquadratic interaction of strength \(\Delta \). Due to the biquadratic coupling, a new ordered state with distinct spin configuration named the stripe ferromagnetic phase emerges. Three regions with different properties are distinguished by the parameter \(\Delta \) and in each region rich characteristics about different first- and second-order phase transition lines and significant critical points are presented. The triple points and re-entrant phase transitions are also found in the canonical phase diagrams.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data reported in the paper are available from the corresponding author on reasonable request.]

References

  1. L.D. Landau, E.M. Lifshitz, Statistical Physics (Elsevier, London, 2013)

    MATH  Google Scholar 

  2. J. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity (Oxford University Press, New York, 2021)

    MATH  Google Scholar 

  3. H. Nishimori, G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University, Oxford, 2010)

    MATH  Google Scholar 

  4. R.K. Pathria, Statistical Mechanics (Elsevier, London, 2022)

    MATH  Google Scholar 

  5. M.W. Zemansky, R.H. Dittman, Heat and Thermodynamics: An Intermediate Textbook (McGraw-Hill, New York, 1997)

    Google Scholar 

  6. J.-X. Hou, Eur. Phys. J. B 94, 6 (2021)

    ADS  Google Scholar 

  7. J.-X. Hou, Phys. Rev. E 104, 024114 (2021)

    ADS  Google Scholar 

  8. J.-X. Hou, Eur. Phys. J. B 94, 151 (2021)

    ADS  Google Scholar 

  9. V.V. Hovhannisyan, N.S. Ananikian, A. Campa, S. Ruffo, Phys. Rev. E 96, 062103 (2017)

    ADS  Google Scholar 

  10. M. Seul, D. Andelman, Science 267, 476 (1995)

    ADS  Google Scholar 

  11. U. Löw, V. Emery, K. Fabricius, S. Kivelson, Phys. Rev. Lett. 72, 1918 (1994)

    ADS  Google Scholar 

  12. O.D.R. Salmon, J.R. de Sousa, M.A. Neto, Phys. Rev. E 92, 032120 (2015)

    ADS  Google Scholar 

  13. O.D.R. Salmon, J.R. de Sousa, M.A. Neto, I.T. Padilha, J.R.V. Azevedo, F.D. Neto, Physica A 464, 103 (2016)

    MathSciNet  ADS  Google Scholar 

  14. O.D.R. Salmon, M.A. Neto, F.D. Neto, D.A.M. Pariona, J.R. Tapia, Phys. Lett. A 382, 3325 (2018)

    ADS  Google Scholar 

  15. A. Campa, G. Gori, V. Hovhannisyan, S. Ruffo, A. Trombettoni, J. Phys. A 52, 344002 (2019)

    MathSciNet  Google Scholar 

  16. V.V. Prasad, A. Campa, D. Mukamel, S. Ruffo, Phys. Rev. E 100, 052135 (2019)

    ADS  Google Scholar 

  17. T. Dauxois, P. de Buyl, L. Lori, S. Ruffo, J. Stat. Mech. P06015 (2010)

  18. O. Cohen, V. Rittenberg, T. Sadhu, J. Phys. A Math. Theor. 48, 055002 (2015)

    ADS  Google Scholar 

  19. E. Albayrak, Mod. Phys. Lett. B 35, 2150286 (2021)

    ADS  Google Scholar 

  20. F. Litaiff, J.R. de Sousa, N.S. Branco, Solid State Commun. 147, 494 (2008)

    ADS  Google Scholar 

  21. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    MathSciNet  ADS  Google Scholar 

  22. T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Dynamics and Thermodynamics of Systems with Long Range Interactions (Springer, Berlin, 2002)

    Google Scholar 

  23. J.-X. Hou, Phys. Rev. E 99, 052114 (2019)

    ADS  Google Scholar 

  24. J.-X. Hou, Eur. Phys. J. B 93, 82 (2020)

    ADS  Google Scholar 

  25. Z.-Y. Yang, J.-X. Hou, Phys. Rev. E 101, 052106 (2020)

    ADS  Google Scholar 

  26. Z.-X. Li, Y.-C. Yao, S. Zhang, J.-X. Hou, Mod. Phys. Lett. B 34, 2050318 (2020)

    ADS  Google Scholar 

  27. S.-Y. Jiao, J.-X. Hou, Mod. Phys. Lett. B 35, 2150095 (2021)

    ADS  Google Scholar 

  28. J.-X. Hou, Mod. Phys. Lett. B 36, 2150621 (2022)

    ADS  Google Scholar 

  29. Y.-C. Yao, J.-X. Hou, Physica A 590, 126776 (2022)

    Google Scholar 

  30. Z.-Y. Yang, J.-X. Hou, Phys. Rev. E 105, 014119 (2022)

    ADS  Google Scholar 

  31. J.F. Nagle, Phys. Rev. A 2, 2124 (1970)

    ADS  Google Scholar 

  32. M. Kardar, Phys. Rev. B 28, 244 (1983)

    MathSciNet  ADS  Google Scholar 

  33. D. Mukamel, S. Ruffo, N. Schreiber, Phys. Rev. Lett. 95, 240604 (2005)

    ADS  Google Scholar 

  34. Y.-C. Yao, J.-X. Hou, Int. J. Theor. Phys. 60, 968 (2021)

    Google Scholar 

  35. J.C. Bonner, J. Nagle, J. Appl. Phys. 42, 1280 (1971)

  36. M. Kaufman, M. Kahana, Phys. Rev. B 37, 7638 (1988)

  37. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica Method and its Applications (World Scientific, Singapore, 1987)

  38. S. Redner, J. Stat. Phys. 25, 15 (1981)

    MathSciNet  ADS  Google Scholar 

  39. R.R. Singh, Z. Weihong, C. Hamer, J. Oitmaa, Phys. Rev. B 60, 7278 (1999)

    ADS  Google Scholar 

  40. O. Sushkov, J. Oitmaa, Z. Weihong, Phys. Rev. B 63, 104420 (2001)

    ADS  Google Scholar 

  41. N. Shannon, B. Schmidt, K. Penc, P. Thalmeier, Eur. Phys. J. B 38, 599 (2004)

    ADS  Google Scholar 

  42. M. Spenke, S. Guertler, Phys. Rev. B 86, 054440 (2012)

    ADS  Google Scholar 

  43. L. Wang, A.W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

    ADS  Google Scholar 

  44. H. Li, L.-P. Yang, Phys. Rev. E 104, 024118 (2021)

    ADS  Google Scholar 

  45. M. Blume, V. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)

    ADS  Google Scholar 

  46. N. Branco, Phys. Rev. B 60, 1033 (1999)

    ADS  Google Scholar 

  47. C.E. Fiore, V.B. Henriques, M.J. de Oliveira, J. Chem. Phys. 125, 164509 (2006)

    ADS  Google Scholar 

  48. L.J. de Jongh, W.D. van Amstel, A.R. Miedema, Physica 58, 277 (1972)

    ADS  Google Scholar 

  49. G. Chapuis, G. Brunisholz, C. Javet, R. Roulet, Inorg. Chem. 22, 455 (1983)

    Google Scholar 

  50. J. Rossat-Mignod, P. Burlet, H. Bartholin, O. Vogt, R. Lagnier, J. Phys. C Solid State Phys. 13, 6381 (1980)

    ADS  Google Scholar 

  51. G. Ódor, Rev. Mod. Phys. 76, 663 (2004)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This project was conducted under Dr. J-XH’s supervision. J-TY wrote the paper. Both authors carried out the calculation, were involved in the discussion of results, and have read and approved its final version.

Corresponding author

Correspondence to Ji-Xuan Hou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JT., Hou, JX. Effect of the nearest-neighbor biquadratic interactions on the spin-1 Nagle–Kardar model. Eur. Phys. J. B 95, 190 (2022). https://doi.org/10.1140/epjb/s10051-022-00452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00452-4

Navigation