Skip to main content

Advertisement

Log in

Possible strategies for performance enhancement of asymmetric potential bistable energy harvesters by orbit jumps

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Due to the merits of broadband response and high sensitivity, bistable oscillators have garnered a great deal of attention in the field of vibrational energy harvesting. However, it is difficult to achieve a bistable energy harvester (BEH) with a perfectly symmetric potential due to the imperfections in materials and structures, and this will greatly influence the output performance. Therefore, this paper focuses on the possible strategies for performance enhancement of asymmetric potential BEHs. Numerical analysis based on voltage response, bifurcation diagram and basin of attraction demonstrates that the appearance of asymmetric potentials in BEHs has a negative effect on the output performance. Average output power and voltage response under different conditions indicate that proper initial conditions and external disturbance could enable the BEHs to achieve high-energy orbit oscillation. Additionally, it is proved that the BEHs can jump from the low-energy orbit to the high-energy orbit to generate more electrical power by changing the phase of excitation signal and external load resistance. By properly selecting the performance enhancement strategies proposed in this paper, the output power of the asymmetric potential BEHs could be improved in practical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014)

    Article  Google Scholar 

  2. S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004)

    Article  ADS  Google Scholar 

  3. Z. Yang, S. Zhou, J. Zu, D. Inman, Joule 2, 642 (2018)

    Article  Google Scholar 

  4. T. Yang, S. Zhou, S. Fang, W. Qin, D.J. Inman, Appl. Phys. Rev. 8, 031317 (2021)

    Article  ADS  Google Scholar 

  5. S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)

    Article  ADS  Google Scholar 

  6. K. Fan, Q. Tan, Y. Zhang, S. Liu, M. Cai, Y. Zhu, Appl. Phys. Lett. 112, 123901 (2018)

    Article  ADS  Google Scholar 

  7. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)

    Article  ADS  Google Scholar 

  8. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  9. F. Moon, P.J. Holmes, J. Sound Vib. 65, 275 (1979)

    Article  ADS  Google Scholar 

  10. S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)

    Article  ADS  Google Scholar 

  11. H.-X. Zou, M. Li, L.-C. Zhao, Q.-H. Gao, K.-X. Wei, L. Zuo, F. Qian, W.-M. Zhang, Energy 217, 119429 (2021)

    Article  Google Scholar 

  12. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)

    Article  Google Scholar 

  13. P. Kim, D. Son, J. Seok, Appl. Phys. Lett. 108, 243902 (2016)

    Article  ADS  Google Scholar 

  14. C. Wang, Q. Zhang, W. Wang, J. Feng, Mech. Syst. Signal Process. 112, 305 (2018)

    Article  ADS  Google Scholar 

  15. Z. Zhou, W. Qin, Y. Yang, P. Zhu, Sens. Actuators A 265, 297 (2017)

    Article  Google Scholar 

  16. O.V. Gendelman, Nonlinear Dyn. 25, 237 (2001)

    Article  Google Scholar 

  17. Q.F. He, M.F. Daqaq, J. Sound Vib. 333, 3479 (2014)

    Article  ADS  Google Scholar 

  18. H. Kim, W.C. Tai, S. Zhou, L. Zuo, Smart Mater. Struct. 26, 115011 (2017)

    Article  ADS  Google Scholar 

  19. A. Kumar, S.F. Ali, A. Arockiarajan, Appl. Phys. Lett. 112, 233901 (2018)

    Article  ADS  Google Scholar 

  20. S. Zhou, L. Zuo, Commun. Nonlinear Sci. Numer. Simul. 61, 271 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Wang, J. Cao, C.R. Bowen, Y. Zhang, J. Lin, Nonlinear Dyn. 94, 1183 (2018)

    Article  Google Scholar 

  22. W. Jiang, H. Shi, X. Han, L. Chen, Q. Bi, J. Vib. Eng. Technol. 8, 893 (2020)

    Article  Google Scholar 

  23. S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)

    Article  ADS  Google Scholar 

  24. D. Mallick, A. Amann, S. Roy, Phys. Rev. Lett. 117, 197701 (2016)

    Article  ADS  Google Scholar 

  25. J. Wang, W.-H. Liao, Energy Convers. Manag. 192, 30 (2019)

    Article  Google Scholar 

  26. J.I. Deza, R.R. Deza, H.S. Wio, Europhys. Lett. 100, 38001 (2012)

    Article  ADS  Google Scholar 

  27. J.I.P. Rosselló, H.S. Wio, R.R. Deza, P. Hänggi, Eur. Phys. J. B 90, 1 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Project of Henan Province (Grant No. 212102310248), China Postdoctoral Science Foundation (2020M682336).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this work. All the authors were involved in the preparation of the manuscript.

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Y., Wei, ZH. et al. Possible strategies for performance enhancement of asymmetric potential bistable energy harvesters by orbit jumps. Eur. Phys. J. B 95, 58 (2022). https://doi.org/10.1140/epjb/s10051-022-00320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00320-1

Navigation