Skip to main content
Log in

Nonlinear dynamics and performance evaluation of an asymmetric bistable energy harvester with unilateral piecewise nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the snap-through characteristics and broadband response, bistable energy harvesters (BEHs) have attracted significant attention. Previous studies revealed that asymmetry in potentials has an adverse impact on performance. To broaden the response bandwidth, a stopper is introduced and positioned at the side with a deeper potential well to realize unilateral piecewise nonlinearity, and this paper emphasizes the system’s nonlinear dynamics and output performance. Bifurcation diagrams and basins of attraction are utilized to study the system’s local and global dynamics under harmonic excitations. Numerical results illustrate that a proper collision gap between the stopper and beam could enable the system to realize large-amplitude oscillation within a wider frequency range, and this phenomenon is closely related to excitation amplitude and collision stiffness. Under stochastic excitation, numerical output reveals that there is an optimal collision gap for low to moderate excitation intensities, while the introduction of a stopper degrades the performance when the noise intensity is large enough. Regarding the collision stiffness, the collision gap and noise intensity should be clarified to examine its influence on performance. In general, this numerical study provides an effective strategy, but still less be explored, to enhance the performance of asymmetric BEHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

C :

Damping matrix

C p :

Capacitive coupling matrix

C p :

Equivalent capacitive, F

c :

Modulus of elasticity, Pa

c 1 :

Equivalent damping, N/(m/s)

c 2 :

Additional damping during the collision, N/(m/s)

D :

Vector of electric displacement

d :

Dimensionless collision distance/gap

d 0 :

Collision distance/gap, m

d x :

Distance between one point on the cantilever to the neutral layer, m

E :

Vector of electric field

E a :

External energy, J

E k :

Kinetic energy, J

E p :

Potential energy, J

e :

Piezoelectric coupling coefficient

F :

Dimensionless nonlinear restoring force

\(\overline{F}\) :

Amplitude of the external mechanical force, N

\(\overline{f}\) :

Applied external force, N

f :

Dimensionless excitation amplitude

G :

Collision force, N

g :

Dimensionless collision force

H :

Hamiltonian function of the undisturbed system

K :

Stiffness matrix

K :

Dimensionless collision stiffness

k :

Equivalent stiffness, N/m

\(k_{1} ,k_{2} ,k_{3}\) :

Coefficients for nonlinear restoring

k s :

Collision stiffness, N/m

l c :

Length scale, m

M :

Mass matrix

m :

Equivalent mass, kg

m tip :

Tip magnets’ mass, kg

N :

Numbers of modes

\(N_{{\overline{f}}}\) :

The numbers of forces applied to the cantilever

N q :

The numbers of charges applied to the cantilever

P :

Dimensionless average power

q :

Charge, C

R :

Load resistance, \(\Omega \)

\({\varvec{r}}(\overline{t})\) :

Total vibration mode function matrix

\(r_{i} (\overline{t})\) :

Coefficient matrix of the ith mode function

S :

Vector of strain

T :

Vector of stress

\(\overline{t}\) :

Time, s

t p :

Thickness of piezoelectric layers, m

t s :

Thickness of the substrate, m

U :

Dimensionless potential function

u :

Deflection vector along z direction

V I :

Variational indicator

V p :

Volume of the piezoelectric layers, m3

V s :

Volume of the substrate, m3

\(\overline{V}\) :

Output voltage, V

v :

Applied voltage, V

x :

Dimensionless displacement

\(\overline{x}\) :

Tip displacement of the cantilever beam, m

y :

\(y = \dot{x}\)

z :

Position along the beam

α :

Ratio between the period of the mechanical system and the time constant of the harvesting circuit

δ :

Variational symbol

\(\hat{\delta }\) :

Dirac-delta function

\(\overline{\beta },\overline{\delta }\) :

Coefficients for dimensionless nonlinear restoring

\(\lambda ,\beta\) :

Weighting coefficients for Rayleigh damping

η :

Gaussian white noise process

\({\varvec{\theta}}\) :

Electromechanical coupling matrix

θ :

Equivalent electromechanical coupling coefficient

\(\omega_{n}\) :

Natural frequency, rad/s

\(\omega\) :

Dimensionless excitation frequency

ρ p :

Material density of the piezoelectric layers, kg/m3

ρ s :

Material density of the substrate, kg/m3

ε :

Dielectric constant

\(\xi_{{1}} ,\xi_{{2}}\) :

Dimensionless damping ratio

κ 2 :

Dimensionless electromechanical coupling coefficient

\(\overline{\Omega }\) :

Excitation frequency

\(\phi_{i} (z)\) :

The ith mode function

\({\varvec{\varPhi}}(z)\) :

Total mode function matrix

φ :

Electric field matrix

\([]_{p}\) :

Subscript for piezoelectric layers

\([]_{s}\) :

Subscript for substrate

\([]_{t}\) :

Matrix transpose

References

  1. Du, R., Xiao, J., Chang, S., Zhao, L., Wei, K., Zhang, W., Zou, H.: Mechanical energy harvesting in traffic environment and its application in smart transportation. J. Phys. D Appl. Phys. 56, 373002 (2023)

    Google Scholar 

  2. Wang, J., Zhou, J., Zhao, W.: Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle. Green Energy Intell. Transp. 1, 100028 (2022)

    Google Scholar 

  3. Zhou, Z., Liu, Y., You, M., Xiong, R., Zhou, X.: Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction. Green Energy Intell. Transp. 1, 100008 (2022)

    Google Scholar 

  4. Fu, H., Mei, X., Yurchenko, D., Zhou, S., Theodossiades, S., Nakano, K., Yeatman, E.M.: Rotational energy harvesting for self-powered sensing. Joule 5, 1074–1118 (2021)

    Google Scholar 

  5. Liu, H., Zhong, J., Lee, C., Lee, S.-W., Lin, L.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5, 041306 (2018)

    Google Scholar 

  6. Guo, S.-L., Yang, Y.-G., Sun, Y.-H.: Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation. Chaos Solitons Fractals 151, 111231 (2021)

    MathSciNet  Google Scholar 

  7. Fang, S., Zhou, S., Yurchenko, D., Yang, T., Liao, W.-H.: Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: a review. Mech. Syst. Signal Process. 166, 108419 (2022)

    Google Scholar 

  8. Safaei, M., Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (2019)

    Google Scholar 

  9. Zhang, B., Liu, H., Zhou, S., Gao, J.: A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components. Appl. Math. Mech. 43, 1001–1026 (2022)

    Google Scholar 

  10. Song, H.C., Kim, S.W., Kim, H.S., Lee, D.G., Kang, C.Y., Nahm, S.: Piezoelectric energy harvesting design principles for materials and structures: material figure-of-merit and self-resonance tuning. Adv. Mater. 32, e2002208 (2020)

    Google Scholar 

  11. Tang, Y., Xu, J.-Y., Chen, L.-Q., Yang, T.: Nonlinear dynamics of an enhanced piezoelectric energy harvester composited of bi-directional functional graded materials. Int. J. Non Linear Mech. 150, 104350 (2023)

    Google Scholar 

  12. Tang, Y., Wang, G., Yang, T., Ding, Q.: Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink. Nonlinear Dyn. 111, 2415–2442 (2022)

    Google Scholar 

  13. Tang, Y., Gao, C., Li, M., Ding, Q.: Novel active-passive hybrid piezoelectric network for vibration suppression in fluid-conveying pipes. Appl. Math. Model. 117, 378–398 (2023)

    MathSciNet  Google Scholar 

  14. Zhou, S., Lallart, M., Erturk, A.: Multistable vibration energy harvesters: principle, progress, and perspectives. J. Sound Vib. 528, 116886 (2022)

    Google Scholar 

  15. Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)

    MathSciNet  Google Scholar 

  16. Chunlin Zhang, R.L., Harne, B.L., Wang, K.W.: Harmonic analysis and experimental validation of bistable vibration energy harvesters interfaced with rectifying electrical circuits. Commun. Nonlinear Sci. Numer. Simul. 82, 105069 (2020). https://doi.org/10.1016/j.cnsns.2019.105069

    Article  MathSciNet  Google Scholar 

  17. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)

    Google Scholar 

  18. Liu, W., Liu, C., Ren, B., Zhu, Q., Hu, G., Yang, W.: Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator. Appl. Phys. Lett. 109, 043905 (2016)

    Google Scholar 

  19. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330, 6036–6052 (2011)

    Google Scholar 

  20. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)

    Google Scholar 

  21. Fan, K., Tan, Q., Zhang, Y., Liu, S., Cai, M., Zhu, Y.: A monostable piezoelectric energy harvester for broadband low-level excitations. Appl. Phys. Lett. 112, 123901 (2018)

    Google Scholar 

  22. Marinkovic, B., Koser, H.: Smart Sand—a wide bandwidth vibration energy harvesting platform. Appl. Phys. Lett. 94, 103505 (2009)

    Google Scholar 

  23. Harne, R.L., Wang, K.-W.: Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing. John Wiley & Sons (2017)

    Google Scholar 

  24. Noh, J., Nguyen, M.S., Kim, P., Yoon, Y.J.: Harmonic balance analysis of magnetically coupled two-degree-of-freedom bistable energy harvesters. Sci. Rep. 12, 6221 (2022)

    Google Scholar 

  25. Zou, H.-X., Li, M., Zhao, L.-C., Gao, Q.-H., Wei, K.-X., Zuo, L., Qian, F., Zhang, W.-M.: A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy 217, 119429 (2021)

    Google Scholar 

  26. Liu, Q., Cao, J., Hu, F., Li, D., Jing, X., Hou, Z.: Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn. 105, 2157–2172 (2021)

    Google Scholar 

  27. Masana, R., Daqaq, M.F.: Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Phys. (2012). https://doi.org/10.1063/1.3684579

    Article  Google Scholar 

  28. Liu, W., Formosa, F., Badel, A.: Optimization study of a piezoelectric bistable generator with doubled voltage frequency using harmonic balance method. J. Intell. Mater. Syst. Struct. 28, 671–686 (2016)

    Google Scholar 

  29. Liu, W., Formosa, F., Badel, A., Wu, Y., Agbossou, A.: Self-powered nonlinear harvesting circuit with a mechanical switch structure for a bistable generator with stoppers. Sens. Actuators A Phys. 216, 106–115 (2014)

    Google Scholar 

  30. Liu, W.Q., Badel, A., Formosa, F., Wu, Y.P., Agbossou, A.: Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Mater. Struct. 22, 125038 (2013)

    Google Scholar 

  31. Arrieta, A.F., Bilgen, O., Friswell, M.I., Hagedorn, P.: Dynamic control for morphing of bi-stable composites. J. Intell. Mater. Syst. Struct. 24, 266–273 (2012)

    Google Scholar 

  32. Arrieta, A.F., Delpero, T., Bergamini, A.E., Ermanni, P.: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102, 173904 (2013)

    Google Scholar 

  33. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: Electromechanical modelling and experiments of a bistable plate for nonlinear energy harvesting. In: ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers (2010)

  34. Arrieta, A.F., Neild, S.A., Wagg, D.J.: On the cross-well dynamics of a bi-stable composite plate. J. Sound Vib. 330, 3424–3441 (2011)

    Google Scholar 

  35. Liu, C., Zhang, W., Kaiping, Y., Liao, B., Zhao, R., Liu, T.: Gravity-induced bistable 2DOF piezoelectric vibration energy harvester for broadband low-frequency operation. Arch. Civ. Mech. Eng. (2023). https://doi.org/10.1007/s43452-023-00739-y

    Article  Google Scholar 

  36. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Google Scholar 

  37. Moon, F., Holmes, P.J.: A magnetoelastic strange attractor. J. Sound Vib. 65, 275–296 (1979)

    Google Scholar 

  38. McInnes, C.R., Gorman, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)

    Google Scholar 

  39. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)

    Google Scholar 

  40. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 173901 (2013)

    Google Scholar 

  41. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Google Scholar 

  42. Cao, J.Y., Zhou, S.X., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015)

    Google Scholar 

  43. Kim, P., Son, D., Seok, J.: Triple-well potential with a uniform depth: advantageous aspects in designing a multi-stable energy harvester. Appl. Phys.Lett. 108, 243902 (2016)

    Google Scholar 

  44. Jiang, W.-A., Han, H., Chen, L.-Q., Bi, Q.-S.: Exploiting self-tuning tristable to improve energy capture from shape memory oscillator. J. Energy Storage 51, 104469 (2022)

    Google Scholar 

  45. Xu, Z., Wang, X., Zhang, Y.: Enhanced performances by tri-stable vibration absorber and energy harvester with negative ground connecting stiffness for impulse response. J. Vib. Eng. Technol. 1–20 (2022)

  46. Su, X., Leng, Y., Sun, S., Chen, X., Xu, J.: Theoretical and experimental investigation of a quad-stable piezoelectric energy harvester using a locally demagnetized multi-pole magnet. Energy Convers. Manag. 271, 116291 (2022)

    Google Scholar 

  47. Zhang, Q., Yan, Y., Han, J., Hao, S., Wang, W.: Dynamic design of a quad-stable piezoelectric energy harvester via bifurcation theory. Sensors 22(21), 8453 (2022). https://doi.org/10.3390/s22218453

    Article  Google Scholar 

  48. Yan, Y., Zhang, Q., Han, J., Wang, W., Wang, T., Cao, X., Hao, S.: Design and investigation of a quad-stable piezoelectric vibration energy harvester by using geometric nonlinearity of springs. J. Sound Vib. 547, 117484 (2023)

    Google Scholar 

  49. Wang, C., Zhang, Q., Wang, W.: Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. J. Sound Vib. 399, 169–181 (2017)

    Google Scholar 

  50. He, Q.F., Daqaq, M.F.: Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 333, 3479–3489 (2014)

    Google Scholar 

  51. Wang, W., Cao, J., Bowen, C.R., Litak, G.: Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. Eur. Phys. J. B. 91, 254 (2018)

    Google Scholar 

  52. Wang, W., Cao, J., Bowen, C.R., Zhang, Y., Lin, J.: Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn. 94, 1183–1194 (2018)

    Google Scholar 

  53. Wang, W., Cao, J., Bowen, C.R., Inman, D.J., Lin, J.: Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations. Appl. Phys. Lett. 112, 213903 (2018)

    Google Scholar 

  54. Norenberg, J.P., Luo, R., Lopes, V.G., Peterson, J.V.L.L., Cunha, A.: Nonlinear dynamics of asymmetric bistable energy harvesters. Int. J. Mech. Sci. 257, 108542 (2023)

    Google Scholar 

  55. Norenberg, J.P., Cunha, A., da Silva, S., Varoto, P.S.: Global sensitivity analysis of asymmetric energy harvesters. Nonlinear Dyn. 109(2), 443–458 (2022). https://doi.org/10.1007/s11071-022-07563-8

    Article  Google Scholar 

  56. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    MathSciNet  Google Scholar 

  57. Huang, D., Han, J., Zhou, S., Han, Q., Yang, G., Yurchenko, D.: Stochastic and deterministic responses of an asymmetric quad-stable energy harvester. Mech. Syst. Signal Process. 168, 108672 (2022)

    Google Scholar 

  58. Moss, S., Barry, A., Powlesland, I., Galea, S., Carman, G.P.: A low profile vibro-impacting energy harvester with symmetrical stops. Appl. Phys. Lett. 97, 234101 (2010)

    Google Scholar 

  59. Lan, C.-B., Qin, W.-Y.: Vibration energy harvesting from a piezoelectric bistable system with two symmetric stops. Acta Phys. Sin. 64, 210501 (2015)

    Google Scholar 

  60. Yurchenko, D., Lai, Z.H., Thomson, G., Val, D.V., Bobryk, R.V.: Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Appl. Energy 208, 456–470 (2017)

    Google Scholar 

  61. Yurchenko, D., Val, D.V., Lai, Z.H., Gu, G., Thomson, G.: Energy harvesting from a DE-based dynamic vibro-impact system. Smart Mater. Struct. 26, 105001 (2017)

    Google Scholar 

  62. Zhou, K., Dai, H.L., Abdelkefi, A., Ni, Q.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers. Int. J. Mech. Sci. 166, 105233 (2020)

    Google Scholar 

  63. Zhou, K., Dai, H.L., Abdelkefi, A., Zhou, H.Y., Ni, Q.: Impacts of stopper type and material on the broadband characteristics and performance of energy harvesters. AIP Adv. 9, 035228 (2019)

    Google Scholar 

  64. Su, M., Xu, W., Zhang, Y., Yang, G.: Response of a vibro-impact energy harvesting system with bilateral rigid stoppers under Gaussian white noise. Appl. Math. Model. 89, 991–1003 (2021)

    MathSciNet  Google Scholar 

  65. Alvis, T., Abdelkefi, A.: Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers. Eur. Phys. J. Spec. Top. 231, 1567–1586 (2022)

    Google Scholar 

  66. Zhang, J.W., Lai, Z.H.: Numerical investigation on a bistable vibro-impact dielectric elastomer generator mounted on a vibrating structure with ultra-low natural frequency. Int. J. Mech. Mater. Des. 19(3), 687–712 (2023). https://doi.org/10.1007/s10999-023-09646-9

    Article  Google Scholar 

  67. Zhang, J., Wu, M., Wu, H., Ding, S.: An asymmetric bistable vibro-impact DEG for enhanced ultra-low-frequency vibration energy harvesting. Int. J. Mech. Sci. 255, 108481 (2023)

    Google Scholar 

  68. Zhang, J.W.: Rotational energy harvesting from a novel arc-cylinder type vibro-impact dielectric elastomer generator. Int. J. Mech. Mater. Des. 18, 587–609 (2022)

    Google Scholar 

  69. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. John Wiley & Sons (2011)

    Google Scholar 

  70. Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Google Scholar 

  71. Priya, S., Inman, D.J.: Energy Harvesting Technologies, vol. 21. Springer (2009)

    Google Scholar 

  72. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons (2008)

    Google Scholar 

  73. Wang, W., Cao, J., Bowen, C.R., Zhou, S., Lin, J.: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy 118, 221–230 (2017)

    Google Scholar 

  74. Inman, D.J., Singh, R.C.: Engineering Vibration, vol. 3. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  75. Zhang, Q., Yang, Y., Wang, W.: Theoretical study on widening bandwidth of piezoelectric vibration energy harvester with nonlinear characteristics. Micromachines 12, 1301 (2021)

    Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 12202400, 52171193), High-level Foreign Expert Introduction Plan of Henan Province (HNGD2023001), Key Research Development and Promotion Project in Henan Province (Grant No. 242102221044, 242102241026,222102320337, 232102240037, 222102240028), Scientific Research Team Plan of Zhengzhou University of Aeronautics (23ZHTD01010), and Engineering Technology Research Center of Henan Province for General Aviation.

Author information

Authors and Affiliations

Authors

Contributions

WW: Conceptualization, Methodology, Investigation, Funding acquisition, Writing–original draft. JW: Investigation, Methodology. SL: Conceptualization, Investigation, Funding acquisition. RW: Writing–review & editing, Funding acquisition.

Corresponding authors

Correspondence to Wei Wang, Shuangyan Liu or Ronghan Wei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, J., Liu, S. et al. Nonlinear dynamics and performance evaluation of an asymmetric bistable energy harvester with unilateral piecewise nonlinearity. Nonlinear Dyn 112, 8043–8069 (2024). https://doi.org/10.1007/s11071-024-09491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09491-1

Keywords

Navigation