Skip to main content

Advertisement

Log in

First-principles study of hydrogen storage on Li, Na and K-decorated defective boron nitride nanosheets

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The hydrogen storage properties of alkali metals (AM) atom decorated defective boron nitride nanosheets (BNNSs) are systematically investigated using First-principles calculations. AM atoms are well dispersed on the BNNSs with B vacancy and BN divacancy defects without the problem of clustering. There are up to four, six and six polarized H2 molecules adsorbed on per Li, Na and K atoms, respectively, with the average adsorption energy of 0.157–0.243 eV/H2. Electronic structure analysis reveals that the H2 molecules are adsorbed via polarization mechanism and orbital hybridization between AM atoms and H2 molecules. For double-sided AM atoms adsorption, the corresponding theoretical hydrogen gravimetric density reaches up to 6.65–9.00 wt%. Using van’t Hoff equation and ab initio molecular dynamics simulations, the thermal stability of the H2 adsorbed system is also investigated.

Graphical abstract

Both the polarization mechanism and the orbital hybridization are responsible for the adsorption of hydrogen molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: All the results presented in the paper can be reproduced with the information provided in the manuscript. The authors can be contacted for further information.] This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. L. Chen, X. Chen, C. Duan, Y. Huang, Q. Zhang, B. Xiao, Reversible hydrogen storage in pristine and Li decorated 2D boron hydride. Phys. Chem. Chem. Phys. 20, 30304–30311 (2018)

    Article  Google Scholar 

  2. X. Zhou, W. Chu, Y. Zhou, W. Sun, Y. Xue, DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets. Appl. Surf. Sci. 439, 246–253 (2018)

    Article  ADS  Google Scholar 

  3. L. Wang, X. Chen, H. Du, Y. Yuan, H. Qu, M. Zou, First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene. Appl. Surf. Sci. 427, 1030–1037 (2018)

    Article  ADS  Google Scholar 

  4. P. Jena, Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2, 206–211 (2011)

    Article  Google Scholar 

  5. D.A.J. Rand, R.M. Dell, The hydrogen economy: a threat or an opportunity for lead–acid batteries. J. Power Sources 144, 568–578 (2005)

    Article  ADS  Google Scholar 

  6. W. Amalia, P. Nuwantoro, Sholihun, Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN). Comput. Condens. Matter 18, e00354 (2019)

    Article  Google Scholar 

  7. G. Cipriani, V. Di Dio, F. Genduso, D. La Cascia, R. Liga, R. Miceli, G. Ricco Galluzzo, Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrogen Energy 39, 8482–8494 (2014)

    Article  Google Scholar 

  8. S. Seenithurai, R. Kodi Pandyan, S. Vinodh Kumar, C. Saranya, M. Mahendran, Li-decorated double vacancy graphene for hydrogen storage application: A first principles study. Int. J. Hydrogen Energy 39, 11016–11026 (2014)

    Article  Google Scholar 

  9. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 37, 1048–1057 (2012)

    Article  Google Scholar 

  10. L. Si, C. Tang, The reversible hydrogen storage abilities of metal Na (Li, K, Ca, Mg, Sc, Ti, Y) decorated all-boron cage B28. Int. J. Hydrogen Energy 42, 16611–16619 (2017)

    Article  Google Scholar 

  11. S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy’s National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120, 246–256 (2007)

    Article  Google Scholar 

  12. P. Banerjee, B. Pathak, R. Ahuja, G.P. Das, First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage. Int. J. Hydrogen Energy 41, 14437–14446 (2016)

    Article  Google Scholar 

  13. Y. Zhang, X. Cheng, Hydrogen adsorption property of Na-decorated boron monolayer: a first principles investigation. Physica E 107, 170–176 (2019)

    Article  ADS  Google Scholar 

  14. J. Long, J. Li, F. Nan, S. Yin, J. Li, W. Cen, Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping. Appl. Surf. Sci. 435, 1065–1071 (2018)

    Article  ADS  Google Scholar 

  15. J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010)

    Article  Google Scholar 

  16. L.P. Zhang, P. Wu, M.B. Sullivan, Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes. J. Phys. Chem. C 115, 4289–4296 (2011)

    Article  Google Scholar 

  17. J. Wang, Y. Du, L. Sun, Ca-decorated novel boron sheet: a potential hydrogen storage medium. Int. J. Hydrogen Energy 41, 5276–5283 (2016)

    Article  Google Scholar 

  18. O. Cretu, Y.C. Lin, K. Suenaga, Evidence for active atomic defects in monolayer hexagonal boron nitride: a new mechanism of plasticity in two-dimensional materials. Nano Lett. 14, 1064–1068 (2014)

    Article  ADS  Google Scholar 

  19. L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: first-principles investigation. Appl. Surf. Sci. 434, 843–849 (2018)

    Article  ADS  Google Scholar 

  20. G. Wu, J. Li, C. Tang, T. Ouyang, C. He, C. Zhang, J. Zhong, A comparative investigation of metal (Li, Ca and Sc)-decorated 6,6,12-graphyne monolayers and 6,6,12-graphyne nanotubes for hydrogen storage. Appl. Surf. Sci. 498, (2019)

    Article  Google Scholar 

  21. W. Zhou, J. Zhou, J. Shen, C. Ouyang, S. Shi, First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 73, 245–251 (2012)

    Article  ADS  Google Scholar 

  22. R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, D. Wu, Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 124, 7672–7673 (2002)

    Article  Google Scholar 

  23. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Article  Google Scholar 

  24. N.S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, Y. Kawazoe, First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem. Phys. 359, 173–178 (2009)

    Article  Google Scholar 

  25. J. Ren, N. Zhang, H. Zhang, X. Peng, First-principles study of hydrogen storage on Pt (Pd)-doped boron nitride sheet. Struct. Chem. 26, 731–738 (2015)

    Article  Google Scholar 

  26. S.-H. Jhi, K. Young-Kyun, Hydrogen adsorption on boron nitride nanotubes: a path to room-temperature hydrogen storage. Phys. Rev. B 69, 245407 (2004)

    Article  ADS  Google Scholar 

  27. M.R. Mananghaya, G.N. Santos, D. Yu, Hydrogen adsorption of Ti-decorated boron nitride nanotube: a density functional based tight binding molecular dynamics study. Adsorption 24, 683–690 (2018)

    Article  Google Scholar 

  28. Z.W. Zhang, W.T. Zheng, Q. Jiang, Hydrogen adsorption on Ce/BNNT systems: a DFT study. Int. J. Hydrogen Energy 37, 5099 (2012)

    Google Scholar 

  29. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1791 (2006)

    Article  Google Scholar 

  30. M.R. Mananghaya, Hydrogen saturation limit of Ti-doped BN nanotube with B-N defects: an insight from DFT calculations. Int. J. Hydrogen Energy 43, 10368–10375 (2018)

    Article  Google Scholar 

  31. M.S. Khan, M.S. Khan, Computational study of hydrogen adsorption on potassium-decorated boron nitride nanotubes. Int. Nano Lett. 2, 7 (2012)

    Article  Google Scholar 

  32. Z.Y. Hu, X. Shao, D. Wang, L.M. Liu, J.K. Johnson, First-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage. J. chem. phys. 141, (2014)

    Article  ADS  Google Scholar 

  33. S. Thomas, K.M. Ajith, S. Chandra, M.C. Valsakumar, Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride. J. Phys. Condens. Matter 27, 315302 (2015)

    Article  ADS  Google Scholar 

  34. C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, (2009)

    Article  ADS  Google Scholar 

  35. Z. Luo, X. Fan, R. Pan, Y. An, A first-principles study of Sc-decorated graphene with pyridinic-N defects for hydrogen storage. Int. J. Hydrogen Energy 42, 3106–3113 (2017)

    Article  Google Scholar 

  36. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  38. R. Muhammad, Y. Shuai, H.P. Tan, A first-principles study on alkaline earth metal atom substituted monolayer boron nitride (BN). J. Mater. Chem. C 5, 8112–8127 (2017)

    Article  Google Scholar 

  39. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  40. Z. Wang, Structure and electronic properties of boron nitride sheet with grain boundaries. J. Nanopart. Res. 14, 756 (2012)

    Article  Google Scholar 

  41. Z. Zhang, Z. Geng, D. Cai, T. Pan, Y. Chen, L. Dong, T. Zhou, Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: first-principles calculations and molecular orbital analysis. Physica E 65, 24–29 (2015)

    Article  ADS  Google Scholar 

  42. W. Paszkowicz, J.B. Pelka, M. Knapp, T. Szyszko, S. Podsiadlo, Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5K temperature range. Appl. Phys. Matter. Sci. Process 75, 431–435 (2002)

    Article  ADS  Google Scholar 

  43. B. Huang, H. Lee, Defect and impurity properties of hexagonal boron nitride: a first-principles calculation. Phys. Rev. B 86, 245406 (2012)

    Article  ADS  Google Scholar 

  44. Y. Chen, H. Wang, H. Wang, J. Zhao, Q. Cai, X. Wang, Y. Ding, Divacancy-assisted transition metal adsorption on the BN graphene and its interaction with hydrogen molecules: a theoretical study. Appl. Surf. Sci. 273, 293–301 (2013)

    Article  ADS  Google Scholar 

  45. D.S. Fartab, A.A. Kordbacheh, Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: a first-principles calculation. Superlattices Microstruct. 118, 185–195 (2018)

    Article  ADS  Google Scholar 

  46. J. Zhang, R. Sun, D. Ruan, M. Zhang, Y. Li, K. Zhang, F. Cheng, Z. Wang, Z.-M. Wang, Point defects in two-dimensional hexagonal boron nitride: a perspective. J. Appl. Phys. 128, 100902 (2020)

    Article  ADS  Google Scholar 

  47. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012)

    Article  ADS  Google Scholar 

  48. Q. Wang, Q. Zhang, X. Zhao, X. Luo, C.P.Y. Wong, J. Wang, D. Wan, T. Venkatesan, S.J. Pennycook, K.P. Loh, G. Eda, A.T.S. Wee, Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 18, 6898–6905 (2018)

    Article  ADS  Google Scholar 

  49. C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009)

    Article  ADS  Google Scholar 

  50. X. Deng, D. Zhang, M. Si, M. Deng, The improvement of the adsorption abilities of some gas molecules on g-BN sheet by carbon doping. Physica E 44, 495–500 (2011)

    Article  ADS  Google Scholar 

  51. S.A. Shevlin, Z.X. Guo, Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes. Phys. Rev. B 76, 024104 (2007)

    Article  ADS  Google Scholar 

  52. G. Kim, S.H. Jhi, S. Lim, N. Park, Crossover between multipole Coulomb and Kubas interactions in hydrogen adsorption on metal-graphene complexes. Phys. Rev. B 79, (2009)

    Article  ADS  Google Scholar 

  53. Y. Liu, W. Liu, R. Wang, L. Hao, W. Jiao, Hydrogen storage using Na-decorated graphyne and its boron nitride analog. Int. J. Hydrogen Energy 39, 12757–12764 (2014)

    Article  Google Scholar 

  54. N. Song, Y. Wang, S. Ding, Y. Yang, J. Zhang, B. Xu, L. Yi, Y. Jia, The hydrogen storage behavior of Li-decorated monolayer WS2: a first-principles study. Vaccum. 117, 63–67 (2015)

    Article  ADS  Google Scholar 

  55. K. Alhameedi, A. Karton, D. Jayatilaka, T. Hussain, Metal functionalized inorganic nano-sheets as promising materials for clean energy storage. Appl. Surf. Sci. 471, 887–892 (2019)

    Article  ADS  Google Scholar 

  56. W. Zhang, Z. Zhang, F. Zhang, W. Yang, Ti-decorated graphitic-C3N4 monolayer: a promising material for hydrogen storage. Appl. Surf. Sci. 386, 247–254 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the NSF of China (Grant No. 11664032).

Author information

Authors and Affiliations

Authors

Contributions

LCW, ZCZ, and LCM did the mainly calculations and wrote the manuscript. LM and JMZ contributed to the discussion of the computational methods and results.

Corresponding author

Correspondence to Liang-Cai Ma.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12017 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LC., Zhang, ZC., Ma, LC. et al. First-principles study of hydrogen storage on Li, Na and K-decorated defective boron nitride nanosheets. Eur. Phys. J. B 95, 50 (2022). https://doi.org/10.1140/epjb/s10051-022-00312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00312-1

Navigation