Skip to main content
Log in

A classical fluctuation theory of the superfluid, Mott, and normal phases of correlated bosons

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a method that generalises the standard mean field theory of correlated lattice bosons to include amplitude and phase fluctuations of the U(1) field that induces onsite particle number mixing. We solve the resulting problem, initially, by using a classical approximation for the particle number mixing field and a Monte Carlo treatment of the resulting bosonic model. In two dimensions we obtain Tc scales that dramatically improve on mean field theory and are within about 20% of quantum Monte Carlo estimates at density n = 1. The ground state, however, is still mean field, with an overestimate of the critical interaction, Uc, for the superfluid to Mott transition. Further including gaussian quantum fluctuations strikingly improves the Uc and the overall thermal phase diagram. The approach has a computational cost that is linear in system size, readily generalises to multispecies bosons, disorder, and the presence of traps, and yields real frequency response functions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature (London) 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. D. Clèment, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, Phys. Rev. Lett. 102, 155301 (2009)

    Article  ADS  Google Scholar 

  3. P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D. Lühmann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2010)

    Article  Google Scholar 

  4. U. Bissbort, S. Götze, Y. Li, J. Heinze, J.S. Krauser, M. Weinberg, C. Becker, K. Sengstock, W. Hofstetter, Phys. Rev. Lett. 106, 205303 (2011)

    Article  ADS  Google Scholar 

  5. I. Bloch, Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  6. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  7. B. Capogrosso-Sansone, S.G. Söyler, N. Prokofév, B. Svistunov, Phys. Rev. A 77, 015602 (2008)

    Article  ADS  Google Scholar 

  8. B. Capogrosso-Sansone, N.V. Prokofév, B.V. Svistunov, Phys. Rev. B 75, 134302 (2007)

    Article  ADS  Google Scholar 

  9. K. Sheshadri, H.R. Krishnamurthy, R. Pandit, T.V. Ramakrishnan, Europhys. Lett. 22, 257 (1993)

    Article  ADS  Google Scholar 

  10. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  11. N. Elstner, H. Monien, Phys. Rev. B 59, 12184 (1999)

    Article  ADS  Google Scholar 

  12. J.K. Freericks, H. Monien, Europhys. Lett. 26, 545 (1994)

    Article  ADS  Google Scholar 

  13. F.E.A. dos Santos, A. Pelster, Phys. Rev. A 79, 013614 (2009)

    Article  ADS  Google Scholar 

  14. A. Dutta, C. Trefzger, K. Sengupta, Phys. Rev. B 86, 085140 (2012)

    Article  ADS  Google Scholar 

  15. D.-S. Lühmann, Phys. Rev. A 87, 043619 (2013)

    Article  ADS  Google Scholar 

  16. M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. B 81, 235122 (2010)

    Article  ADS  Google Scholar 

  17. M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. B 83, 134507 (2011)

    Article  ADS  Google Scholar 

  18. D.B.M. Dickerscheid, D. van Oosten, P.J.H. Denteneer, H.T.C. Stoof, Phys. Rev. A 68, 043623 (2003)

    Article  ADS  Google Scholar 

  19. X. Lu, J. Li, Y. Yu, Phys. Rev. A 73, 043607 (2006)

    Article  ADS  Google Scholar 

  20. A.S. Sajna, T.P. Polak, R. Micnas, P. Rożek, Phys. Rev. A 92, 013602 (2015)

    Article  ADS  Google Scholar 

  21. K. Byczuk, D. Vollhardt, Phys. Rev. B 77, 235106 (2008)

    Article  ADS  Google Scholar 

  22. W.-J. Hu, N.-H. Tong, Phys. Rev. B 80, 245110 (2009)

    Article  ADS  Google Scholar 

  23. P. Anders, E. Gull, L. Pollet, M. Troyer, P. Werner, Phys. Rev. Lett. 105, 096402 (2010)

    Article  ADS  Google Scholar 

  24. B. Lauritzen, J.W. Negele, Phys. Rev. C 44, 729

  25. B. Lauritzen, G. Bertsch, Phys. Rev. C 39, 2412

  26. H. Attias, Y. Alhassid, Nucl. Phys. A 625, 565 (1997)

    Article  ADS  Google Scholar 

  27. A.P. Kampf, G.T. Zimanyi, Phys. Rev. B 47, 279 (1993)

    Article  ADS  Google Scholar 

  28. D. van Oosten, P. van der Straten, H.T.C. Stoof, Phys. Rev. A 63, 053601 (2001)

    Article  ADS  Google Scholar 

  29. K. Sengupta, N. Dupuis, Phys. Rev. A 71, 033629 (2005)

    Article  ADS  Google Scholar 

  30. S. Wessel, F. Alet, M. Troyer, G. George Batrouni, Phys. Rev. A 70, 053615 (2004)

    Article  ADS  Google Scholar 

  31. D. Malpetti, T. Roscilde, Phys. Rev. Lett. 119, 040602 (2017)

    Article  ADS  Google Scholar 

  32. N.V. Prokof’ev, B.V. Svistunov, I. Tupitsyn, Sov. Phys. JETP 87, 310 (1998)

    Article  ADS  Google Scholar 

  33. L. Pollet, K.V. Houcke, S.M.A. Rombouts, J. Comput. Phys. 225, 2249 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Majumdar, P. A classical fluctuation theory of the superfluid, Mott, and normal phases of correlated bosons. Eur. Phys. J. B 93, 33 (2020). https://doi.org/10.1140/epjb/e2020-100330-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100330-5

Keywords

Navigation