Skip to main content
Log in

Effect of Cr on the generalized stacking fault energy of impure doped Ni (111) surface: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present work, a systematic analysis of the microscopic plastic deformation mechanism and mechanical properties of interstitial impurities (H, O, N, S, and P) and Ni doped, or not doped, with Cr, was conducted based on generalized stacking fault energy curves generated via first-principles calculations. Focus has been put on the effects of Cr on plastic deformation for Ni doped interstitial impurities, upon the GPFE curve, with the aim to investigate the effects of Cr on the deformation mode and mechanical properties for doped Ni systems. It is found that a solid solution of Cr caused the tendency of partial dislocation in Ni. The evaluation of the Rice criterion reveals that Cr tends to decrease the ductility in Ni, and it cannot reverse interstitial H promoting the probability of cleavage fracture in Ni, while increases the ductility of O, P and S doped Ni, particular in O doped Ni, due to increasing the value of ductility D remarkably, so possibly changes the tendency of cleavage fracture. Besides, the solid solution of Cr is beneficial in promoting the dissociation of dislocation into fragments more easily in Ni, and enhances dislocation nucleation, while O, N, and S impurities have a slower rate of partial dislocation emission in Ni when interacting with Cr. Furthermore, Cr promotes the probability of twinning in Ni, and probably switches the deformation mechanism of H doped Ni from dislocation mediated slipping to twinning. Our study provides important insights toward the understanding and control of dislocation dynamics in doped Ni.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Pollock, A.S. Argon, Acta Metall. Et Materialia 42, 1859 (1994)

    Article  Google Scholar 

  2. S.H. Van, P.M. Derlet, A.G. Frøseth, Nat. Mater. 3, 399 (2004)

    Article  ADS  Google Scholar 

  3. G. Wei, W. Zhao, N. Miao, et al., Comput. Mater. Sci. 144, 23 (2018)

    Article  Google Scholar 

  4. H. Xing, J. Huang, Mater. Lett. 187, 80 (2016)

    Article  Google Scholar 

  5. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, et al., Appl. Phys. Lett. 89, 887 (2006)

    Google Scholar 

  6. X.Z. Wu, R. Wang, S.F. Wang, et al., Appl. Surf. Sci. 256, 6345 (2010)

    Article  ADS  Google Scholar 

  7. D.S. Gianola, S.V. Petegem, M. Legros, et al., Acta Mater. 54, 2253 (2006)

    Article  Google Scholar 

  8. J. Yang, S. Wang, X. Tang, et al., J. Supercritic. Fluids 131, 1 (2018)

    Article  Google Scholar 

  9. A.R. Oganov, G.D. Price, S. Scandolo, Z. Krystall. 220, 531 (2005)

    Google Scholar 

  10. S. Romankov, Y.C. Park, I.V. Shchetinin, J. Alloys Compounds 694, 1121 (2017)

    Article  Google Scholar 

  11. E. Dudarev, G. Bakach, A.I. Potekaev, et al., Adv. Mater. Res. 1013, 138 (2014)

    Article  Google Scholar 

  12. V. Yamakov, D. Wolf, S.R. Phillpot, et al., Nat. Mater. 3, 43 (2004)

    Article  ADS  Google Scholar 

  13. S.X. Mcfadden, R.S. Mishra, R.Z. Valiev, et al., Nature 398, 684 (1999)

    Article  ADS  Google Scholar 

  14. P. Xian, D. Zhu, Z. Hu, et al., Mater. Design 45, 518 (2013)

    Article  Google Scholar 

  15. A.G. Frøseth, P.M. Derlet, H.V. Swygenhoven, Acta Mater. 52, 5863 (2004)

    Article  Google Scholar 

  16. J.M. Zhang, B. Wang, K.W. Xu, Pramana J. Phys. 69, 603 (2007)

    Article  ADS  Google Scholar 

  17. X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, et al., Appl. Phys. Lett. 84, 3564 (2004)

    Article  ADS  Google Scholar 

  18. A. Datta, U.V. Waghmare, U. Ramamurty, Scr. Mater. 60, 124 (2009)

    Article  Google Scholar 

  19. C.X. Li, S.H. Dang, S.H. Wang, et al., Chin. Phys. B 23, 117102 (2014)

    Article  ADS  Google Scholar 

  20. S.H. Dang, C.X. Li, P.D. Han, Chin. J. Phys. 61, 1 (2019)

    Article  Google Scholar 

  21. V. Vitek, Philos. Mag. 18, 773 (1968)

    Article  ADS  Google Scholar 

  22. V. Vitek Cryst. Lattice Defects 5, 1 (1974)

    Google Scholar 

  23. E. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004)

    Article  ADS  Google Scholar 

  24. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992)

    Article  ADS  Google Scholar 

  25. J.R. Rice, G.E. Beltz, J. Mech. Phys. Solids 42, 333 (1994)

    Article  ADS  Google Scholar 

  26. X.X. Yu, C.Y. Wang, Acta Mater. 57, 5914 (2009)

    Article  Google Scholar 

  27. D.J. Siegel, Appl. Phys. Lett. 87, 121901 (2005)

    Article  ADS  Google Scholar 

  28. S. Kibey, J.B. Liu, D.D. Johnson, et al., Mater. 55, 6843 (2007)

    Google Scholar 

  29. M. Jo, Y.M. Koo, B.J. Lee, et al., Proc. Natl. Acad. Sci. USA 111, 6560 (2014)

    Article  ADS  Google Scholar 

  30. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 18 (1996)

    Article  Google Scholar 

  32. D.J. Chadi, Phys. Rev. B 16, 790 (1977)

    Article  ADS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Kohlhaas, P. Dunner, P.Z. Schmitz, Z. Angew. Phys. 23, 245 (1967)

    Google Scholar 

  35. S. Kibey, J. Liu, M. Curtis, D. Johnson, H. Sehitoglu, Acta Mater. 54, 2991 (2006)

    Article  Google Scholar 

  36. P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett. 94, 92 (2013)

    Article  Google Scholar 

  37. T. Fu, X. Peng, Y. Zhao, R. Sun, D. Yin, N. Hu, Z. Wang, RSC Adv. 5, 77831 (2015)

    Article  Google Scholar 

  38. D. Rodney, L. Ventelon, E. Clouet, et al., Acta Mater. 124, 633 (2016)

    Article  Google Scholar 

  39. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  40. A.I. Balitskii, L.M. Ivaskevich, Strength Mater 50, 880 (2018)

    Article  Google Scholar 

  41. N. Dong, C. Zhang, H. Liu, et al., Comput. Mater. Sci. 90, 137 (2014)

    Article  Google Scholar 

  42. E.B. Tadmor, N.A. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004)

    Article  ADS  Google Scholar 

  43. N. Bernstein, E.B. Tadmor, Phys. Rev. B 69, 50 (2004)

    Article  Google Scholar 

  44. H.V. Swygenhoven, P.M. Derlet, A.G. Frøseth, Nat. Mater. 3, 399 (2004)

    Article  ADS  Google Scholar 

  45. E.B. Tadmor, E.B. Hai, J. Mech. Phys. Solids 51, 765 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Li.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Dang, S., Han, P. et al. Effect of Cr on the generalized stacking fault energy of impure doped Ni (111) surface: a first-principles study. Eur. Phys. J. B 93, 156 (2020). https://doi.org/10.1140/epjb/e2020-10013-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10013-x

Keywords

Navigation