Skip to main content
Log in

Resistive state of a thin superconducting strip with an engineered central defect

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the resistive state of a mesoscopic superconducting strip with an engineered defect at the center. The defect is another superconductor with a different critical temperature. Several geometrical shapes of the defect are studied. The strip is considered under a transport electrical current, Ja, and at zero external applied magnetic field. The current is applied through a metallic contact, and the defect is simulated with the phenomenological parameter α(T) = α0(TTc(r)) in the Ginzburg-Landau free energy density. Here Tc(r) = Tc,0 + δT(r), where δT(r) < 0 (δT(r) > 0) corresponds to a domain of lower (higher) critical temperature. It is shown that the critical current density for the I–V characteristic curve, Jc1, at which the first vortex-antivortex (V-Av) pair nucleates in the sample, as well as its dynamics, strongly depend on the critical temperature, the position, and the geometry of the defect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andronov, I. Gordion, V. Kurin, I. Nefedov, I. Shereshevsky, Physica C 213, 193 (1993)

    Article  ADS  Google Scholar 

  2. A.G. Sivakov, A.M. Glukhov, A.N. Omelyanchouk, Y. Koval, P. Muller, A.V. Ustinov, Phys. Rev. Lett. 91, 267001 (2003)

    Article  ADS  Google Scholar 

  3. W.J. Skocpol, M.R. Beasley, M. Tinkham, J. Appl. Phys. 45, 4054 (1974)

    Article  ADS  Google Scholar 

  4. J. Barba-Ortega, E. Sardella, R. Zadorosny, Phys. Lett. A 382, 215 (2018)

    Article  ADS  Google Scholar 

  5. G. Berdiyorov, M.V. Milošević, F.M. Peeters, Phys. Rev. B 79, 184506 (2009)

    Article  ADS  Google Scholar 

  6. G. Berdiyorov, K. Harrabi, F. Oktasendra, K. Gasmi, A.I. Mansour, J.P. Maneval, F.M. Peeters, Phys. Rev. B 90, 054506 (2014)

    Article  ADS  Google Scholar 

  7. G. Berdiyorov, K. Harrabi, J.P. Maneval, F.M. Peeters, Supercond. Sci. Technol. 28, 025004 (2015)

    Article  ADS  Google Scholar 

  8. G.J. Dolan, L.D. Jackel, Phys. Rev. Lett. 39, 1628 (1977)

    Article  ADS  Google Scholar 

  9. R.B. Laibowitz, A.N. Broers, J.T.C. Yeh, J.M. Viggiano, App. Phys. Lett. 35, 891 (1979)

    Article  ADS  Google Scholar 

  10. G. Berdiyorov, A.R. de C. Romaguera, M.V. Milošević, M.M. Doria, L. Covaci, F.M. Peeters, Eur. Phys. J. B 85, 130 (2012)

    Article  ADS  Google Scholar 

  11. G.R. Berdiyorov, M.V. Milošević, M.L. Latimer, Z.L. Xiao, W.K. Kwok, F.M. Peeters, Phys. Rev. Lett. 109, 057004 (2012)

    Article  ADS  Google Scholar 

  12. A. He, C. Xue, H. Yong, Supercond. Sci. Technol. 29, 065014 (2016)

    Article  ADS  Google Scholar 

  13. A.V. Silhanek, M.V. Milošević, R.B.G. Kramer, G.R. Berdiyorov, J. Van de Vondel, R.F. Luccas, T. Puig, F.M. Peeters, V.V. Moshchalkov, Phys. Rev. Lett. 104, 017001 (2010)

    Article  ADS  Google Scholar 

  14. M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. Lett. 59, 147004 (2005)

    Article  ADS  Google Scholar 

  15. G. Berdiyorov, M.V. Milošević, F.M. Peeters, Phys. Rev. B 80, 214509 (2009)

    Article  ADS  Google Scholar 

  16. Z.L. Jelić, M.V. Milošević, J. Van de Vondel, A.V. Silhanek, Sci. Rep. 6, 35687 (2016)

    Article  ADS  Google Scholar 

  17. L. Embon, Y. Anahory, Z.L. Jelić, E.O. Lachman, Y. Myasoedov, M.E. Huber, G.P. Mikitik, A.V. Silhanek, M.V. Milošević, A. Gurevich, E. Zeldov, Nat. Commun. 8, 85 (2017)

    Article  ADS  Google Scholar 

  18. L. Kramer, R.J. Watts-Tobin, Phys. Rev. Lett. 40, 1041 (1978)

    Article  ADS  Google Scholar 

  19. J. Watts-Tobin, Y. Krähenbühl, L. Kramer, J. Low Temp. Phys. 42, 459 (1981)

    Article  ADS  Google Scholar 

  20. D.Y. Vodolazov, F.M. Peeters, M. Morelle, V.V. Moshchalkov, Phys. Rev. B 71, 184502 (2005)

    Article  ADS  Google Scholar 

  21. L. Kramer, R.J. Watts-Tobin, Phys. Rev. Lett. 40, 1041 (1978)

    Article  ADS  Google Scholar 

  22. W.D. Gropp, H.G. Kaper, G.K. Leaf, D.M. Levine, M. Palumbo, V.M. Vinokur, J. Comput. Phys. 123, 254 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Buscaglia, C. Bolech, C. Lopez, in Connectivity and Superconductivity, edited by J. Berger, J. Rubinstein (Springer, Heidelberg, 2000)

  24. M.V. Milošević, R. Geurts, Physica C 470, 791 (2010)

    Article  ADS  Google Scholar 

  25. C.A. Aguirre, Q. Martins, J. Barba-Ortega, UIS Ingenierías 18, 213 (2019)

    Article  Google Scholar 

  26. P.G. de Gennes, Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1994)

  27. Z.L. Jelić, M.V. Milošević, J. Van de Vondel, A.V. Silhanek, Sci. Rep. 5, 14604 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Barba-Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba-Ortega, J., Joya, M.R. & Sardella, E. Resistive state of a thin superconducting strip with an engineered central defect. Eur. Phys. J. B 92, 143 (2019). https://doi.org/10.1140/epjb/e2019-100082-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100082-y

Keywords

Navigation