Skip to main content
Log in

Evidence for criticality in financial data

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We provide evidence that cumulative distributions of absolute normalized returns for the 100 American companies with the highest market capitalization, uncover a critical behavior for different time scales Δt. Such cumulative distributions, in accordance with a variety of complex – and financial – systems, can be modeled by the cumulative distribution functions of q-Gaussians, the distribution function that, in the context of nonextensive statistical mechanics, maximizes a non-Boltzmannian entropy. These q-Gaussians are characterized by two parameters, namely (q, β), that are uniquely defined by Δt. From these dependencies, we find a monotonic relationship between q and β, which can be seen as evidence of criticality. We numerically determine the various exponents which characterize this criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Mantegna, H.E. Stanley, An introduction to econophysics: correlations and complexity in finance (Cambridge University Press, Cambridge, 2000)

  2. H. Takayasu, Empirical science of financial fluctuations: the advent of econophysics (Springer, Berlin, 2002)

  3. A. Bunde, H.J. Schellnhuber, J. Kropp, The science of disasters: climate disruptions, hearth attacks and market crashes (Springer, Berlin, 2002)

  4. L. Bachelier, Ann. Sci. École Norm. Suppl. 3, 21 (1900)

    Article  Google Scholar 

  5. B.B. Mandelbrot, J. Bus. 36, 294 (1962)

    Google Scholar 

  6. A. Pagan, J. Empir. Finance 3, 15 (1996)

    Article  Google Scholar 

  7. X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003)

    Article  ADS  Google Scholar 

  8. P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, Eur. Phys. J. B 3, 138 (1998)

    Article  ADS  Google Scholar 

  9. P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 5305 (1999)

    Article  ADS  Google Scholar 

  10. M. Denys, T. Gubiec, M. Jagielski, R. Kutner, H.E. Stanley, Phys. Rev. E 94, 042305 (2016)

    Article  ADS  Google Scholar 

  11. P. Oświecimka, J. Kwapień, S. Drożoż, Physica A 347, 626 (2005)

    Article  ADS  Google Scholar 

  12. J. Kwapień, P. Oświecimka, S. Drożoż, Physica A 350, 466 (2005)

    Article  ADS  Google Scholar 

  13. E. Oltean, F.V. Kusmartsev, H.I.J.E.N.E. 5, 221 (2012)

    Google Scholar 

  14. A. Dragulesku, V.M. Yakovenko, Statistical mechanics of money, income, and wealth: a short survey, http://www2.physics.umd.edu/yakovenk/econophysics/

  15. A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000)

    Article  ADS  Google Scholar 

  16. A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 20, 585 (2001)

    Article  ADS  Google Scholar 

  17. A.C. Silva, V.M. Yakovenko, Europhys. Lett. 69, 304 (2005)

    Article  ADS  Google Scholar 

  18. K.E. Kurten, F.V. Kutmartsev, Europhys. Lett. 93, 28003 (2011)

    Article  ADS  Google Scholar 

  19. F.V. Kutmartsev, Phys. Lett. A 375, 966 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Oltean, Modelling income, wealth, and expenditure data by use of econophysics, arXiv:1603.08383 [q-fin.GN] (2016)

  21. B.B. Mandelbrot, Fractals and scaling in finance (Springer, Berlin, 1997)

  22. J. Kwapień, S. Drożdż, Phys. Rep. 515, 115 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  24. C. Tsallis, Introduction to nonextensive statistical mechanics – approaching a complex world (Springer, New York, 2009)

  25. C. Tsallis, Entropy 19, 457 (2017)

    Article  ADS  Google Scholar 

  26. S.M. Duarte Queiros, Quant. Finance 5, 475 (2005)

    Article  MathSciNet  Google Scholar 

  27. C. Tsallis, C. Anteneodo, L. Borland, R. Osorio, Physica A 324, 89 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Osorio, L. Borland, C. Tsallis, Distributions of height-frequency stock-market observables, in Nonextensive entropy – interdisciplinary applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, New York, 2004)

  29. F. Michael, M.D. Johnson, Physica A 320, 525 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Rak, S. Drożdż, J. Kwapień, Physica A 374, 315 (2007)

    Article  ADS  Google Scholar 

  31. S. Drożdż, M. Forczek, J. Kwapień, P. Oświecimka, R. Rak, Physica A 383, 59 (2007)

    Article  ADS  Google Scholar 

  32. J. Ludescher, C. Tsallis, A. Bunde, Europhys. Lett. 95, 68002 (2011)

    Article  ADS  Google Scholar 

  33. C. Tsallis, Chaos Solitons Fractals 88, 254 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75, 3589 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  36. C. Tsallis, A.R. Plastino, R.F. Alvarez-Estrada, J. Math. Phys. 50, 043303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Prato, C. Tsallis, Phys. Rev. E 60, 2398 (1999)

    Article  ADS  Google Scholar 

  38. L.G. Moyano, C. Tsallis, M. Gell-Mann, Europhys. Lett. 73, 813 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76, 307 (2008)

    Article  MathSciNet  Google Scholar 

  40. S. Umarov, C. Tsallis, J. Phys. A: Math. Theor. 49, 415204 (2016)

    Article  Google Scholar 

  41. S.G.A. Brito, L.R. da Silva, C. Tsallis, Nat. Sci. Rep. 6, 27992 (2016)

    Article  ADS  Google Scholar 

  42. D.B. Walton, J. Rafelshi, Phys. Rev. Lett. 84, 31 (2000)

    Article  ADS  Google Scholar 

  43. V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 105, 022002 (2010)

    Article  ADS  Google Scholar 

  44. G. Combe, V. Richefeu, M. Stasiak, A.P.F. Atman, Phys. Rev. Lett. 115, 238301 (2016)

    Article  ADS  Google Scholar 

  45. M.L. Lyra, C. Tsallis, Phys. Rev. Lett. 80, 53 (1998)

    Article  ADS  Google Scholar 

  46. F. Baldovin, A. Robledo, Phys. Rev. E 69, 045202(R) (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, G., de Marcos, A.F. Evidence for criticality in financial data. Eur. Phys. J. B 91, 1 (2018). https://doi.org/10.1140/epjb/e2017-80535-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80535-3

Keywords

Navigation