Skip to main content

Advertisement

Log in

Structural stability and electronic properties of AgInS2 under pressure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We employ state-of-the-art ab initio density functional theory techniques to investigate the structural, dynamical, mechanical stability and electronic properties of the ternary AgInS2 compounds under pressure. Using cohesive energy and enthalpy, we found that from the six potential phases explored, the chalcopyrite and the orthorhombic structures were very competitive as zero pressure phases. A pressure-induced phase transition occurs around 1.78 GPa from the low pressure chalcopyrite phase to a rhombohedral RH-AgInS2 phase. The pressure phase transition around 1.78 GPa is accompanied by notable changes in the volume and bulk modulus. The calculations of the phonon dispersions and elastic constants at different pressures showed that the chalcopyrite and the orthorhombic structures remained stable at all the selected pressure (0, 1.78 and 2.5 GPa), where detailed calculations were performed, while the rhombohedral structure is only stable from the transition pressure 1.78 GPa. Pressure effect on the bandgap is minimal due to the small range of pressure considered in this study. The meta-GGA MBJ functional predicts bandgaps which are in good agreement with available experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984)

    Article  ADS  Google Scholar 

  2. G. Delgado, A.J. Mora, C. Pineda, T. Tinoco, Mater. Res. Bull. 36, 2507 (2001)

    Article  Google Scholar 

  3. A.A. Vaipolin, Yu.V. Rud, I.V. Rozhdestvenskaya, Cryst. Res. Technol. 23, 337 (1988)

    Article  Google Scholar 

  4. J. Krustok, J. Raudoja, M. Krunks, H. Mandar, H. Collan, J. Appl. Phys. 88, 205 (2000)

    Article  ADS  Google Scholar 

  5. J. Liu, S. Chen, Q. Liu, Y. Zhu, Y. Lu, Comp. Mater. Sci. 91, 159 (2014)

    Article  Google Scholar 

  6. S. Sharma, A.S. Verma, V.K. Jindal, Physica B 438, 97 (2014)

    Article  ADS  Google Scholar 

  7. A.S. Verma, S.R. Bhardwaj, J. Phys.: Condens. Matter 19, 026213 (2007)

    ADS  Google Scholar 

  8. V. Jayalakshmi, S. Davapriya, R. Murugan, B. Palanivel, J. Phys. Chem. Solids 67, 669 (2006)

    Article  ADS  Google Scholar 

  9. G.M. Dongho Nguimdo, D.P. Joubert, Eur. Phys. J. B 88, 113 (2015)

    Article  ADS  Google Scholar 

  10. J. Han, Z. Liu, K. Guo, J. Ya, Y. Zhao, X. Zhang, T. Hong, J. Liu, ACS Appl. Mater. Interfaces 6, 17119 (2014)

    Article  Google Scholar 

  11. Y. Wang, Q. Zhang, Y. Li, H. Wang, Nanoscale 7, 6185 (2015)

    Article  ADS  Google Scholar 

  12. D. Huang, C. Persson, Chem. Phys. Lett. 591, 189 (2014)

    Article  ADS  Google Scholar 

  13. C.H. Wang, K.W. Cheng, C.J. Tseng, Sol. Energy Mater. Sol. Cells 95, 453 (2011)

    Article  Google Scholar 

  14. K.W. Cheng, P.H. Liu, Sol. Energy Mater. Sol. Cells 95, 1859 (2011)

    Article  Google Scholar 

  15. C.J. Tseng, C.H. Wang, K.W. Cheng, Sol. Energy Mater. Sol. Cells 96, 33 (2012)

    Article  Google Scholar 

  16. Q. Cheng, X. Peng, C.K. Chan, ChemSusChem 6, 102 (2013)

    Article  ADS  Google Scholar 

  17. J.S. Jang, P.H. Borse, J.S. Lee, S.H. Choi, H.G. Kim, J. Chem. Phys. 128, 154717 (2008)

    Article  ADS  Google Scholar 

  18. C.A. Arredondo, J. Clavijo, G. Gordillo, J. Phys.: Conf. Ser. 167, 012050 (2009)

    ADS  Google Scholar 

  19. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Chem. Mater. 18, 3330 (2006)

    Article  Google Scholar 

  20. K.J. Range, G. Engert, A. Weiss, Sol. Stat. Commun. 7, 1749 (1969)

    Article  ADS  Google Scholar 

  21. A. Werner, H.D. Hochheimer, A. Jayaraman, Phys. Rev. B 23, 3836 (1981)

    Article  ADS  Google Scholar 

  22. A. Abdellaoui, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, Y. Monteil, J. Alloys Compd. 487, 206 (2009)

    Article  Google Scholar 

  23. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  26. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  27. A.P. Gaiduk, V.N. Staroverov, J. Chem. Phys. 131, 044107 (2009)

    Article  ADS  Google Scholar 

  28. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  29. M. Shishkin, G. Kresse, Phys. Rev. B 75, 235102 (2007)

    Article  ADS  Google Scholar 

  30. A. Jain et al., APL Materials 1, 011002 (2013)

    Article  ADS  Google Scholar 

  31. A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, Acta Crystallogr. B 58, 364 (2002)

    Article  Google Scholar 

  32. F. Arab, F.A. Sahraoui, K. Haddadi, L. Louail, Comput. Mater. Sci. 65, 520 (2012)

    Article  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  35. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  Google Scholar 

  36. Vasp-dfpt and phonopy calculation, http://phonopy.sourceforge.net/vasp.html#vasp-dfpt-interface

  37. W. Setyawan, S. Curtarolo, Comp. Mater. Sci. 49, 299 (2010)

    Article  Google Scholar 

  38. F. Birch, Phys. Rev. 71, 809 (1947)

    Article  ADS  Google Scholar 

  39. A. Zunger, J. Jaffe, Phys. Rev. Lett. 51, 662 (1983)

    Article  ADS  Google Scholar 

  40. M.S.H. Suleiman, Ph.D. thesis, University of the Witwatersrand Johannesburg, 2013

  41. E.N. Orisakwe, V. Sharma, J.E. Lowther, Phys. Stat. Sol. B 249, 1020 (2012)

    Article  ADS  Google Scholar 

  42. S.K. Jain, P. Srivastava, Eur. Phys. J. B 86, 389 (2013)

    Article  ADS  Google Scholar 

  43. D. Gherouel, I. Gaied, M. Amlouk, J. Alloys Compd. 566, 147 (2013)

    Article  Google Scholar 

  44. A.J. Frueh, Zeitschrift für Kristallographie-Crystalline Materials 110, 136 (1958)

    Article  ADS  Google Scholar 

  45. N.S. Rampersadh, A.M. Venter, D.G. Billing, Physica B 350, E383 (2004)

    Article  ADS  Google Scholar 

  46. G. Steigmann, H. Sutherland, J. Goodyear, Acta Crystallogr. 19, 967 (1965)

    Article  Google Scholar 

  47. T. Hammerschmidt, I. Abrikosov, D. Alfe, S. Fries, L. Höglund, M. Jacobs, J. Koßmann, X.G. Lu, G. Paul, Phys. Stat. Sol. B 251, 81 (2014)

    Article  ADS  Google Scholar 

  48. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  49. M. Born, Math. Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  50. D.C. Wallace, Thermodynamics of Crystals (Courier Corporation, 1998)

  51. O. Gomis et al., J. Appl. Phys. 116, 133521 (2014)

    Article  ADS  Google Scholar 

  52. G. SinKo, N. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002)

    ADS  Google Scholar 

  53. H. Zhai, X. Li, J. Du, Mater. Trans. 53, 1247 (2012)

    Article  Google Scholar 

  54. A.S. Verma, S. Sharma, R. Bhandari, B. Sarkar, V. Jindal, Mater. Chem. Phys. 132, 416 (2012)

    Article  Google Scholar 

  55. J. Haines, J. Leger, G. Bocquillon, Ann. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  56. G.S. Manyali, R. Warmbier, A. Quandt, J.E. Lowther, Comput. Mater. Sci. 69, 299 (2013)

    Article  Google Scholar 

  57. S.F. Pugh, The London, Edinburgh Dublin Philos. Magazine J. Sci. 45, 823 (1954)

    Article  Google Scholar 

  58. D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011)

    Article  ADS  Google Scholar 

  59. J. Camargo-Martinez, R. Baquero, Phys. Rev. B 86, 195106 (2012)

    Article  ADS  Google Scholar 

  60. S.H. You, K.J. Hong, B.J. Lee, T.S. Jeong, C.J. Youn, J.S. Park, S.N. Baek, J. Cryst. Growth 245, 261 (2002)

    Article  ADS  Google Scholar 

  61. I. Aguilera, J. Vidal, P. Wahnón, L. Reining, S. Botti, Phys. Rev. B 84, 085145 (2011)

    Article  ADS  Google Scholar 

  62. J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984)

    Article  ADS  Google Scholar 

  63. M. Fox, in Quantum Optics: An Introduction (Oxford University Press, 2006), Vol. 6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Dongho Nguimdo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongho Nguimdo, G., Manyali, G., Abdusalam, M. et al. Structural stability and electronic properties of AgInS2 under pressure. Eur. Phys. J. B 89, 90 (2016). https://doi.org/10.1140/epjb/e2016-60585-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60585-9

Keywords

Navigation