Skip to main content
Log in

Oxygen vacancy induced metal-insulator transition in LaNiO3

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First principle calculations were carried out to examine the metal-insulator transition in LaNiO3 due to changes in oxygen content and consequent alteration of valence state of nickel. The optical properties of all the oxygen deficient LaNiO3−x compounds were calculated to illustrate the electronic structures of the compounds and the change they undergo during the metal-insulator transition. The metallic nature of LaNiO3 is characterized by the Drude peak in the optical conductivity spectra and the high reflectivity it exhibits in the low frequency region. The complex dielectric function and the optical conductivity spectra clearly show that, for x = 0.25, i.e., LaNiO2.75 becomes a semiconductor. As x increases further to 0.5, a gap in the optical spectra appears, indicating the insulating nature of LaNiO2.5. The insulating state of LaNiO2.5 is best described by the GW+HSE method which gives a good estimation of the optical gap of the material. The absorption spectra of LaNiO2.5 clearly reveal that this material is transparent in the low frequency region. This metal-insulator transition is followed by another insulator to semiconductor transition, as x is increased further to 1 i.e., in case of LaNiO2. The metal-insulator transition is then explained on the basis of electron localization function calculations, which show the increase in the covalent bonding in the system as the transition to the insulating state sets in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Stefanovich, A. Pergament, D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000)

    ADS  Google Scholar 

  2. P. Limelette, A. Georges, D. Jerome, P. Wzietek, P. Metcalf, J.M. Honig, Science 203, 89 (2003)

    Article  ADS  Google Scholar 

  3. A.L. Pergament, P.P. Boriskov, A.A. Velichko, N.A. Kuldin, J. Phys. Chem. Solids 71, 874 (2010)

    Article  ADS  Google Scholar 

  4. T. Nan, M. Liu, W. Ren, Z.G. Ye, N.X. Sun, Sci. Rep. 4, 5931 (2014)

    ADS  Google Scholar 

  5. C.H. Ahn, J.M. Triscone, J. Mannhart, Nature 428, 1015 (2003)

    Article  ADS  Google Scholar 

  6. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, IEEE Electron Device Lett. 32, 11 (2011)

    Google Scholar 

  7. S.K. Nandi, X. Liu, D.K. Venkatachalam, R.G. Elliman, J. Phys. D 48, 195105 (2015)

    Article  ADS  Google Scholar 

  8. Z. Yang, C. Ko, S. Ramanathan, Ann. Rev. Mater. Res. 41, 337 (2011)

    Article  ADS  Google Scholar 

  9. C.R. Cho, S. Cho, S. Vadim, R. Jung, I. Yoo, Thin Solid Films 495, 375 (2006)

    Article  ADS  Google Scholar 

  10. T.F. Rosenbaum, R.F. Milligan, M.A. Paalanen, G.A. Thomas, R.N. Bhatt, W. Lin, Phys. Rev. B 27, 12 (1983)

    Article  Google Scholar 

  11. D.D. Sarma, N. Shanthi, P. Mahadevan, J. Phys.: Condens. Matter 6, 10467 (1994)

    ADS  Google Scholar 

  12. C. Piamonteze, H.C.N. Tolentino, A.Y. Ramos, N.E. Massa, J.A. Alonso, M.J. Martınez-Lopes, M.T. Casais, Phys. Scr. T 115, 648 (2005)

    Article  Google Scholar 

  13. J. Son, P. Moetakef, J.M. LeBeau, D. Ouellette, L. Balents, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010)

    Article  ADS  Google Scholar 

  14. K. Sreedhar, J.M. Honig, M. Darwin, M. Mcelfresh, P.M. Shand, J. Xu, B.C. Crooker, J. Spalek, Phys. Rev. B 46, 6382 (1996)

    Article  ADS  Google Scholar 

  15. K.P. Rajeev, G.V. Shivashankar, A.K. Raychaudhuri, Solid State Commun. 79, 591 (1991)

    Article  ADS  Google Scholar 

  16. M.K. Stewart, C.H. Yee, J. Liu, M. Kareev, R.K. Smith, B.C. Chapler, M. Varela, P.J. Ryan, K. Haule, J. Chakhalian, D.N. Basov, Phys. Rev. B 83, 075125 (2011)

    Article  ADS  Google Scholar 

  17. M.K. Stewart, D. Brownstead, J. Liu, M. Kareev, J. Chakhalian, D.N. Basov, Phys. Rev. B 86, 205102 (2012)

    Article  ADS  Google Scholar 

  18. A.Y. Dobin, K.R. Nikolaev, I.N. Krivorotov, R.M. Wentzcovitch, E.D. Dahlberg, A.M. Goldman, Phys. Rev. B 68, 113408 (2003)

    Article  ADS  Google Scholar 

  19. R. Scherwitzl, P. Zubko, C. Lichtensteiger, J.M. Triscone, Appl. Phys. Lett. 95, 222114 (2009)

    Article  ADS  Google Scholar 

  20. B. Berini, N. Keller, Y. Dumont, E. Popova, W. Noun, M. Guyot, J. Vigneron, A. Etcheberry, N. Franco, R.M.C. da Silva, Phys. Rev. B 76, 205417 (2007)

    Article  ADS  Google Scholar 

  21. R.D. Sanchez, M.T. Causa, A. Caneiro, A. Butera, M. Vallet-Reg, M.J. Sayagues, J. Gonzalez-Calbet, F. Garcıa-Sanz, J. Rivas, Phys. Rev. B 54, 23 (1996)

    Google Scholar 

  22. M.J. Sayagues, M. Vallet-Regi, A. Caneiro, J.M. Gonzalez-Calbet, J. Sol. Stat. Chem. 110, 295 (1994)

    Article  ADS  Google Scholar 

  23. K.W. Lee, W.E. Pickett, Phys. Rev. B 70, 165109 (2004)

    Article  ADS  Google Scholar 

  24. V.I. Anisimov, D. Bukhvalov, T.M. Rice, Phys. Rev. B 59, 12 (1999)

    Article  Google Scholar 

  25. A. Ikeda, T. Manabe, M. Naito, Physica C 506, 83 (2014)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  27. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  29. G. Gou, I. Grinberg, A.M. Rappe, J.M. Rondinelli, Phys. Rev. B 84, 144101 (2011)

    Article  ADS  Google Scholar 

  30. N. Hamada, Phys. Chem. Sol. 54, 1157 (1993)

    Article  ADS  Google Scholar 

  31. M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006)

    Article  ADS  Google Scholar 

  32. V. Von, Ph.D. thesis, RWTH Aachen University, 2011

  33. J.A. Alonso, M.J. Martinez-Lope, J.L. Garcia-Munoz, M.T. Fernandez-Diaz, J. Phys.: Condens. Matter 9, 6417 (1997)

    ADS  Google Scholar 

  34. A.R. Beal, H.P. Hughes, W.Y. Liang, J. Phys. C 8, 1975 (1975)

    Article  Google Scholar 

  35. L. Qiao, X. Bi, Eur. Phys. Lett. 93, 57002 (2011)

    Article  ADS  Google Scholar 

  36. L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang, G. Fu, Solid State Commun. 150, 2011 (2010)

    Article  ADS  Google Scholar 

  37. Z.G. Hu, W.W. Li, Y.W. Li, M. Zhu, Z.Q. Zhu, J.H. Chu, Appl. Phys. Lett. 94, 221104 (2009)

    Article  ADS  Google Scholar 

  38. N.A. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt, USA, 1976)

  39. Y. Nohara, S. Yamamoto, T. Fujiwara, Phys. Rev. B 79, 195110 (2009)

    Article  ADS  Google Scholar 

  40. T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  41. M. Abbate, G. Zampieri, F. Prado, A. Caneiro, J.M. Gonzalez-Calbet, M. Vallet-Regi, Phys. Rev. B 65, 155101 (2002)

    Article  ADS  Google Scholar 

  42. A. Rusydi et al., Phys. Rev. B 78, 125110 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D., Kundu, T. Oxygen vacancy induced metal-insulator transition in LaNiO3 . Eur. Phys. J. B 89, 4 (2016). https://doi.org/10.1140/epjb/e2015-60714-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60714-0

Keywords

Navigation