Skip to main content
Log in

Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report experimental results from frequency-domain spectroscopy on graphene (GE) filled polyvinylidene difluoride trifluoroethylene P(VDF-TrFE). The dielectric properties of these polymer nanocomposites (GPN) were investigated over a broad range of frequency (from 102 Hz to a few GHz) and a broad range of temperature (from 150 K to 370 K) by using two measurement techniques: impedance spectroscopy and asymmetrical stripline. Care is needed in relating the GE content to the dielectric properties of GPN since the addition of GE to P(VDF-TrFE) can result in a nonmonotonic permittivity change. At low frequency (<1 MHz) the relaxation spectra is not Debye like but is characterized with a broad relaxation time distribution especially at low temperatures. This effect originates from the freezing process of dipoles and Maxwell-Wagner-Sillars (MWS) interfacial polarization. Additionally, a fit of the effective permittivity versus GE content suggests that our data are in accord with the two-exponent phenomenological percolation equation (TEPPE). These experimental results draw attention to the importance of the large surface area of the GE nanoparticles in controlling the interface between the GE flakes and the polymer phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schwierz, Nat. Nanotech. 5, 487 (2010)

    Article  ADS  Google Scholar 

  2. G.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. E.P. Randviir, D.A.C. Browson, C.E. Banks, Mater. Today 17, 426 (2014)

    Article  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimmey, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  5. M. Aldrigo, M. Dragoman, D. Dragoman, J. Appl. Phys. 116, 114302 (2014)

    Article  ADS  Google Scholar 

  6. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. 98, 072906 (2011)

    ADS  Google Scholar 

  7. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011)

    Article  Google Scholar 

  8. X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673 (2011)

    Article  Google Scholar 

  9. H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, T. Szkopek, Appl. Phys. Lett. 99, 153504 (2011)

    Article  ADS  Google Scholar 

  10. Z. Wang, J. Luo, G.-L. Zhao, AIP Adv. 4, 017139 (2014)

    Article  ADS  Google Scholar 

  11. B.J.-P. Adohi, V. Laur, B. Haidar, C. Brosseau, Appl. Phys. Lett. 104, 082902 (2014)

    Article  ADS  Google Scholar 

  12. H.-S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

  13. X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, Y. Du, Nat. Sci. Rep. 3, 3421 (2014)

    Google Scholar 

  14. T. Sharifi, E. Gracia-Espino, H. Reza Barzegar, X. Jia, F. Nitze, G. Hu, P. Nordblad, C.-W. Tai, T. Wågberg, Nat. Commun. 4, 2319 (2013)

    Article  ADS  Google Scholar 

  15. Y.V. Bludov, N.M.R. Peres, M.I. Vasilevskiy, J. Opt. 15, 114004 (2013)

    Article  ADS  Google Scholar 

  16. W. Baaziz, L. Truong-Phuoc, C. Duong-Viet, G. Melinte, I. Janowska, V. Papaefthimiou, O. Ersen, S. Zafeiratos, D. Begin, S. Begin-Colin, C. Pham-Huu, J. Mater. Chem. A 2, 2690 (2014)

    Article  Google Scholar 

  17. P. Liu, Y. Huang, X. Zhang, Compos. Sci. Technol. 95, 107 (2014)

    Article  Google Scholar 

  18. B. Jang, A. Zhamu, J. Mater. Sci. 43, 5092 (2008)

    Article  ADS  Google Scholar 

  19. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010)

    Article  Google Scholar 

  20. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52, 5 (2011)

    Article  Google Scholar 

  21. H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010)

    Article  ADS  Google Scholar 

  22. Y. Yang, W. Rigdon, X. Huang, X. Li, Nat. Sci. Rep. 3, 2086 (2013)

    ADS  Google Scholar 

  23. C. Brosseau, J. Phys. D 39, 1277 (2006)

    Article  Google Scholar 

  24. V. Myroshnychenko, C. Brosseau, J. Appl. Phys. 103, 084112 (2008)

    Article  ADS  Google Scholar 

  25. C. Brosseau, A. Beroual, A. Boudida, J. Appl. Phys. 88, 7278 (2000)

    Article  ADS  Google Scholar 

  26. C. Brosseau, P. Talbot, IEEE Trans. Dielect. Electr. Insul. 11, 819 (2004)

    Article  Google Scholar 

  27. C. Brosseau, Computational Electromagnetics: From the Design of Heterostructures to the Modeling of Biostructures, in press

  28. C. Brosseau, J. Ben Youssef, P. Talbot, A.-M. Konn, J. Appl. Phys. 93, 9243 (2003)

    Article  ADS  Google Scholar 

  29. J. Wu, D.S. McLachlan, Phys. Rev. B 58, 14880 (1998)

    Article  ADS  Google Scholar 

  30. D.S. McLachlan, G. Sauti, J. Nanomaterials, 2007, 30389 (2007)

    Article  Google Scholar 

  31. F. Amaral, L.C. Costa, M.A. Valente, F. Henry, J. Non-Cryst. Solids 355, 2160 (2009)

    Article  ADS  Google Scholar 

  32. E. Salahun , P. Queffelec, M. Le Floc’h, P. Gelin, IEEE Trans. Mag. 37, 2743 (2001)

    Article  ADS  Google Scholar 

  33. Y. Wang, S.-G. Luo, M. Lanagan, Q. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 444 (2009)

    Article  Google Scholar 

  34. V. Bobnar, B. Vodopivec, A. Levstik, M. Kosec, B. Hilczer, Q.M. Zhang, Macromolecules 36, 4436 (2003)

    Article  ADS  Google Scholar 

  35. Q. Chen, K. Ren, B. Chu, Y. Liu, Q.-M. Zhang, V. Bobnar, A. Levstik, Ferroelectrics 354, 178 (2007)

    Article  Google Scholar 

  36. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991)

  37. P. Murugaraj, D. Mainwaring, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005)

    Article  ADS  Google Scholar 

  38. A. Hsu, H. Wang, K.K. Kim, J. Kong, T. Palacios, IEEE Electron. Device Lett. 32, 1008 (2011)

    Article  ADS  Google Scholar 

  39. M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994)

  40. C.W. Nan, Prog. Mater. Sci. 37, 1 (1993)

    Article  Google Scholar 

  41. L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Phys. Status Solidi A 208, 459 (2011)

    Article  ADS  Google Scholar 

  42. P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Nanotechnology 23, 365702 (2012)

    Article  ADS  Google Scholar 

  43. Q. Li, Q.Z. Xue, L.Z. Gao, X.L. Gao, Q.B. Zheng, Compos. Sci. Technol. 68, 2290 (2008)

    Article  Google Scholar 

  44. A. Mdarhri, F. Carmona, P. Delhaes, C. Brosseau, J. Appl. Phys. 103, 054303 (2008)

    Article  ADS  Google Scholar 

  45. C. Brosseau, P. Talbot, Meas. Sci. Technol. 16, 1823 (2005)

    Article  ADS  Google Scholar 

  46. C. Brosseau, W. Ndong, A. Mdarhri, J. Appl. Phys. 104, 074907 (2008)

    Article  ADS  Google Scholar 

  47. D. Micheli, C. Apollo, R. Pastore, M. Marche, Compos. Sci. Technol. 70, 400 (2010)

    Article  Google Scholar 

  48. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  ADS  Google Scholar 

  49. P. Saini, M. Arora, G. Gupta, B. Kumar Gupta, V. Nand Singh, V. Choudhary, Nanoscale 5, 4330 (2013)

    Article  ADS  Google Scholar 

  50. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013)

    Article  Google Scholar 

  51. Y. Yang, M.C. Gupta, K.L. Dudley, W. Lawrence, Nano Lett. 5, 2131 (2005)

    Article  ADS  Google Scholar 

  52. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brosseau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adohi, B., Haidar, B., Costa, L. et al. Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites. Eur. Phys. J. B 88, 280 (2015). https://doi.org/10.1140/epjb/e2015-60328-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60328-6

Keywords

Navigation