Skip to main content
Log in

From gapped excitons to gapless triplons in one dimension

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Often, exotic phases appear in the phase diagrams between conventional phases. Their elementary excitations are of particular interest. Here, we consider the example of the ionic Hubbard model in one dimension. This model is a band insulator (BI) for weak interaction and a Mott insulator (MI) for strong interaction. In between, a spontaneously dimerized insulator (SDI) occurs which is governed by energetically low-lying charge and spin degrees of freedom. Applying a systematically controlled version of the continuous unitary transformations (CUTs) we are able to determine the dispersions of the elementary charge and spin excitations and of their most relevant bound states on equal footing. The key idea is to start from an externally dimerized system using the relative weak interdimer coupling as small expansion parameter which finally is set to unity to recover the original model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)

  2. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  3. J. des Cloizeaux, J.J. Pearson, Phys. Rev. 128, 2131 (1962)

    Article  ADS  Google Scholar 

  4. L.D. Faddeev, L.A. Takhtajan, Phys. Lett. A 85, 375 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.C. Cross, D.S. Fisher, Phys. Rev. B 19, 402 (1979)

    Article  ADS  Google Scholar 

  6. G.S. Uhrig, F. Schönfeld, M. Laukamp, E. Dagotto, Eur. Phys. J. B 7, 67 (1999)

    Article  ADS  Google Scholar 

  7. C. Knetter, G. Uhrig, Eur. Phys. J. B 13, 209 (2000)

    Article  ADS  Google Scholar 

  8. W. Zheng, C.J. Hamer, R.R.P. Singh, S. Trebst, H. Monien, Phys. Rev. B 63, 144411 (2001)

    Article  ADS  Google Scholar 

  9. K.P. Schmidt, G.S. Uhrig, Phys. Rev. Lett. 90, 227204 (2003)

    Article  ADS  Google Scholar 

  10. T. Papenbrock, T. Barnes, D.J. Dean, M.V. Stoitsov, M.R. Strayer, Phys. Rev. B 68, 024416 (2003)

    Article  ADS  Google Scholar 

  11. A. Auerbach, Interacting Electrons and Quantum Magnetism, Graduate Texts in Contemporary Physics (Springer, New York, 1994)

  12. L. Balents, Nature 464, 199 (2010)

    Article  ADS  Google Scholar 

  13. M. Fabrizio, A.O. Gogolin, A.A. Nersesyan, Phys. Rev. Lett. 83, 2014 (1999)

    Article  ADS  Google Scholar 

  14. M.E. Torio, A.A. Aligia, H.A. Ceccatto, Phys. Rev. B 64, 121105 (2001)

    Article  ADS  Google Scholar 

  15. S.R. Manmana, V. Meden, R.M. Noack, K. Schönhammer, Phys. Rev. B 70, 155115 (2004)

    Article  ADS  Google Scholar 

  16. H. Otsuka, M. Nakamura, Phys. Rev. B 71, 155105 (2005)

    Article  ADS  Google Scholar 

  17. L. Tincani, R.M. Noack, D. Baeriswyl, Phys. Rev. B 79, 165109 (2009)

    Article  ADS  Google Scholar 

  18. M. Hafez-Torbati, N.A. Drescher, G.S. Uhrig, Phys. Rev. B 89, 245126 (2014)

    Article  ADS  Google Scholar 

  19. A. Garg, H.R. Krishnamurthy, M. Randeria, Phys. Rev. Lett. 97, 046403 (2006)

    Article  ADS  Google Scholar 

  20. S.S. Kancharla, E. Dagotto, Phys. Rev. Lett. 98, 016402 (2007)

    Article  ADS  Google Scholar 

  21. N. Paris, K. Bouadim, F. Hébert, G.G. Batrouni, R.T. Scalettar, Phys. Rev. Lett. 98, 046403 (2007)

    Article  ADS  Google Scholar 

  22. L. Craco, P. Lombardo, R. Hayn, G.I. Japaridze, E. Müller-Hartmann, Phys. Rev. B 78, 075121 (2008)

    Article  ADS  Google Scholar 

  23. H.-M. Chen, H. Zhao, H.-Q. Lin, C.-Q. Wu, New J. Phys. 12, 093021 (2010)

    Article  ADS  Google Scholar 

  24. P.J. Strebel, Z.G. Soos, J. Chem. Phys. 53, 4077 (1970)

    Article  ADS  Google Scholar 

  25. Z.G. Soos, S. Mazumdar, Phys. Rev. B 18, 1991 (1978)

    Article  ADS  Google Scholar 

  26. N. Nagaosa, J. Takimoto, J. Phys. Soc. Jpn 55, 2735 (1986)

    Article  ADS  Google Scholar 

  27. J.B. Torrance, J.E. Vazquez, J.J. Mayerle, V.Y. Lee, Phys. Rev. Lett. 46, 253 (1981)

    Article  ADS  Google Scholar 

  28. T. Egami, S. Ishihara, M. Tachiki, Science 261, 1307 (1993)

    Article  ADS  Google Scholar 

  29. K. Kobayashi, S. Horiuchi, R. Kumai, F. Kagawa, Y. Murakami, Y. Tokura, Phys. Rev. Lett. 108, 237601 (2012)

    Article  ADS  Google Scholar 

  30. H. Krull, N.A. Drescher, G.S. Uhrig, Phys. Rev. B 86, 125113 (2012)

    Article  ADS  Google Scholar 

  31. M. Hafez, S.A. Jafari, Eur. Phys. J. B 78, 323 (2010)

    Article  ADS  Google Scholar 

  32. M. Hafez, M.R. Abolhassani, J. Phys.: Condens. Matter 23, 245602 (2011)

    ADS  Google Scholar 

  33. J. Oitmaa, C. Hamer, W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models (Cambridge University Press, Cambridge, 2006)

  34. S. Duffe, G. Uhrig, Eur. Phys. J. B 84, 475 (2011)

    Article  ADS  Google Scholar 

  35. F. Wegner, Ann. Phys. 506, 77 (1994)

    Article  Google Scholar 

  36. S. Kehrein, in The Flow Equation Approach to Many-Particle Systems, Springer Tracts in Modern Physics (Springer, Berlin, 2006), Vol. 217

  37. C. Knetter, K. Schmidt, G. Uhrig, Eur. Phys. J. B 36, 525 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. H.-Y. Yang, A.M. Läuchli, F. Mila, K.P. Schmidt, Phys. Rev. Lett. 105, 267204 (2010)

    Article  ADS  Google Scholar 

  39. S. Dusuel, G.S. Uhrig, J. Phys. A 37, 9275 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. H.Y. Yang, K.P. Schmidt, Europhys. Lett. 94, 17004 (2011)

    Article  ADS  Google Scholar 

  41. B. Fauseweh, G.S. Uhrig, Phys. Rev. B 87, 184406 (2013)

    Article  ADS  Google Scholar 

  42. T. Fischer, S. Duffe, G.S. Uhrig, New J. Phys. 12, 033048 (2010)

    Article  ADS  Google Scholar 

  43. G. Müller, H. Thomas, H. Beck, J.C. Bonner, Phys. Rev. B 24, 1429 (1981)

    Article  ADS  Google Scholar 

  44. M. Karbach, G. Müller, A.H. Bougourzi, A. Fledderjohann, K.-H. Mütter, Phys. Rev. B 55, 12510 (1997)

    Article  ADS  Google Scholar 

  45. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998)

  46. T. Wilkens, R.M. Martin, Phys. Rev. B 63, 235108 (2001)

    Article  ADS  Google Scholar 

  47. A.P. Kampf, M. Sekania, G.I. Japaridze, P. Brune, J. Phys.: Condens. Matter 15, 5895 (2003)

    ADS  Google Scholar 

  48. M. Nakamura, Phys. Rev. B 61, 16377 (2000)

    Article  ADS  Google Scholar 

  49. S. Ejima, S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hafez-Torbati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez-Torbati, M., Drescher, N. & Uhrig, G. From gapped excitons to gapless triplons in one dimension. Eur. Phys. J. B 88, 3 (2015). https://doi.org/10.1140/epjb/e2014-50551-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50551-0

Keywords

Navigation