Skip to main content
Log in

First-principle study on the relaxation of defected titanium dioxide under electric fields and its impacts on capacitor-voltage curves

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The first-principle theoretical studies about the effects of the electric field and oxygen vacancies on the structural relaxation of rutile titanium dioxide and the impacts of the relaxed structures on the capacitor-voltage curves are reported. The results show that oxygen vacancies in the same side bring more unstable bonds between oxygen atoms and titanium atoms than they do in the two sides. Titanium atoms dominate the interactions with oxygen vacancies on the unstable bonds. The unstable bonds of Ti-O would be broken at an electric field of 2.6 MV/cm. The broken bonds caused by the electric field and oxygen vacancies can form the conduction path in rutile titanium dioxide. The static dielectric constants are dependent on the dispersion of oxygen vacancies. It is concluded that the capacitor-voltage curves of Metal/TiO2/P-Si structure are dependent on the oxygen vacancies. It can help us to clarify the atom-level mechanism of the conduction path in resistive switching in resistance random-access memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.K. Adepalli, M. Kelsch, R. Merkle, J. Maier, Adv. Funct. Mater. 23, 1798 (2013)

    Article  Google Scholar 

  2. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser, Nanotechnology 22, 254001 (2011)

    Article  ADS  Google Scholar 

  3. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  4. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  5. H.D. Lee, B. Magyari-Kope, Y. Nishi, Phys. Rev. B 81, 193202 (2010)

    Article  ADS  Google Scholar 

  6. M.F. Camellone, N.N. Nair, B. Meyer, D. Marx, Phys. Rev. Lett. 105, 146405 (2010)

    Article  ADS  Google Scholar 

  7. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  Google Scholar 

  8. M.D. Rasmussen, L.M. Molina, B. Hammer, J. Chem. Phys. 120, 988 (2004)

    Article  ADS  Google Scholar 

  9. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  10. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Adv. Mater. 19, 2232 (2007)

    Article  Google Scholar 

  11. H.Y. Kim, H.M. Lee, G. Henkelman, J. Am. Chem. Soc. 134, 1560 (2012)

    Article  Google Scholar 

  12. J.G. Chang, H.T. Chen, S.P. Ju, H.L. Chen, C.C. Hwang, Langmuir 26, 4813 (2010)

    Article  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  14. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. R.S. Mulliken, J. Chem. Phys. 23, 1833 (2004)

    Article  ADS  Google Scholar 

  16. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996)

    Article  ADS  Google Scholar 

  17. L.M. Terman, Solid-state Electron. 5, 285 (1962)

    Article  ADS  Google Scholar 

  18. K. Lehovec, A. Slobodskoy, Phys. Status Solidi 3, 447 (1963)

    Article  Google Scholar 

  19. X. Han, G. Shao, J. Phys. Chem. C 115, 8274 (2011)

    Article  Google Scholar 

  20. C. Lee, P. Ghosez, X. Gonze, Phys. Rev. B 50, 13379 (1994)

    Article  ADS  Google Scholar 

  21. K.M. Glassford, J.R. Chelikowsky, Phys. Rev. B 46, 1284 (1992)

    Article  ADS  Google Scholar 

  22. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  Google Scholar 

  23. C.H. Lui, Z. Li, K.F. Mak, E. Cappelluti, T.F. Heinz, Nat. Phys. 7, 944 (2011)

    Article  Google Scholar 

  24. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  25. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009)

    Article  ADS  Google Scholar 

  26. A.A. Avetisyan, B. Partoens, F.M. Peeters, Phys. Rev. B 81, 115432 (2010)

    Article  ADS  Google Scholar 

  27. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12, 113 (2011)

    Article  ADS  Google Scholar 

  28. N.D. Drummond, V. Zolyomi, V.I. Fal’Ko, Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  29. Y. Li, S.V. Rotkin, U. Ravaioli, Nano Lett. 3, 183 (2003)

    Article  ADS  Google Scholar 

  30. N.A. Deskins, M. Dupuis, J. Phys. Chem. C 113, 346 (2008)

    Article  Google Scholar 

  31. L.F. Mao, C. Tan, M. Xu, J. Appl. Phys. 88, 6560 (2000)

    Article  ADS  Google Scholar 

  32. L.F. Mao, Nano. Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Feng Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, WS., Ji, AM. et al. First-principle study on the relaxation of defected titanium dioxide under electric fields and its impacts on capacitor-voltage curves. Eur. Phys. J. B 87, 298 (2014). https://doi.org/10.1140/epjb/e2014-50476-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50476-6

Keywords

Navigation