Skip to main content
Log in

Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present the exact solution, obtained by means of the Transfer Matrix (TM) method, of the 1D Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) Coulomb interactions in the atomic limit (t = 0). The competition among the interactions (U, V 1, and V 2) generates a plethora of T = 0 phases in the whole range of fillings. U, V 1, and V 2 are the intensities of the local, NN and NNN interactions, respectively. We report the T = 0 phase diagram, in which the phases are classified according to the behavior of the principal correlation functions, and reconstruct a representative electronic configuration for each phase. In order to do that, we make an analytic limit T → 0 in the transfer matrix, which allows us to obtain analytic expressions for the ground state energies even for extended transfer matrices. Such an extension of the standard TM technique can be easily applied to a wide class of 1D models with the interaction range beyond NN distance, allowing for a complete determination of the T = 0 phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. S. Miyashita, Prog. Theor. Phys. 120, 785 (2008)

    Article  ADS  Google Scholar 

  3. H. Tasaki, Eur. Phys. J. B 64, 365 (2008)

    Article  ADS  Google Scholar 

  4. M. Fleck, A.I. Lichtenstein, E. Pavarini, A.M. Oleś, Phys. Rev. Lett. 84, 4962 (2000)

    Article  ADS  Google Scholar 

  5. H. Schweitzer, G. Czycholl, Z. Phys. B 83, 93 (1991)

    Article  ADS  Google Scholar 

  6. S. Pankov, V. Dobrosavljević, Phys. Rev. B 77, 085104 (2008)

    Article  ADS  Google Scholar 

  7. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  8. R. Micnas, J. Ranninger, S. Robaszkiewicz, S. Tabor, Phys. Rev. B 37, 9410 (1988)

    Article  ADS  Google Scholar 

  9. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  10. C.N.R. Rao, A. Arulraj, A.K. Cheetham, B. Raveau, J. Phys: Condens. Matter 12, R83 (2000)

    Article  ADS  Google Scholar 

  11. B. Muschler et al., Eur. Phys. J. Special Topics 188, 131 (2010)

    Article  ADS  Google Scholar 

  12. T. Mori, M. Katsuhara, S. Kimura, Y. Misaki, K. Tanaka, Synth. Met. 133-134, 281 (2003)

    Article  Google Scholar 

  13. H. Seo, J. Phys. Soc. Jpn 69, 805 (2000)

    Article  ADS  Google Scholar 

  14. H. Yoshioka, M. Tsuchiizu, Y. Suzumura, J. Phys. Soc. Jpn 70, 762 (2001)

    Article  ADS  Google Scholar 

  15. H. Bethe, Z. Phys. 71, 205 (1931)

    Article  ADS  Google Scholar 

  16. G. Esirgen, H.B. Schüttler, N.E. Bickers, Phys. Rev. Lett. 82, 1217 (1999)

    Article  ADS  Google Scholar 

  17. Y. Tomio, N. Dupuis, Y. Suzumura, Phys. Rev. B 64, 125123 (2001)

    Article  ADS  Google Scholar 

  18. M. Murakami, J. Phys. Soc. Jpn 69, 1113 (2000)

    Article  ADS  Google Scholar 

  19. W.P. Su, Phys. Rev. B 69, 012506 (2004)

    Article  ADS  Google Scholar 

  20. W.P. Su, Y. Chen, Phys. Rev. B 64, 172507 (2001)

    Article  ADS  Google Scholar 

  21. M. Onozawa, Y. Fukumoto, A. Oguchi, Y. Mizuno, Phys. Rev. B 62, 9648 (2000)

    Article  ADS  Google Scholar 

  22. M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)

    Article  ADS  Google Scholar 

  23. M. Nakamura, J. Phys. Soc. Jpn 68, 3123 (1999)

    Article  ADS  Google Scholar 

  24. G. Japaridze, S. Sarkar, Eur. Phys. J. B 28, 139 (2002)

    Article  ADS  Google Scholar 

  25. E. Plekhanov, S. Sorella, M. Fabrizio, Phys. Rev. Lett. 90, 187004 (2003)

    Article  ADS  Google Scholar 

  26. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004)

  27. A. Avella, F. Mancini, Eur. Phys. J. B 41, 149 (2004)

    Article  ADS  Google Scholar 

  28. M. Nakamura, A. Kitazawa, K. Nomura, Phys. Rev. B 60, 7850 (1999)

    Article  ADS  Google Scholar 

  29. P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B 65, 155113 (2002)

    Article  ADS  Google Scholar 

  30. A.W. Sandvik, L. Balents, D.K. Campbell, Phys. Rev. Lett. 92, 236401 (2004)

    Article  ADS  Google Scholar 

  31. S. Ejima, S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007)

    Article  ADS  Google Scholar 

  32. S. Glocke, A. Klümper, J. Sirker, Phys. Rev. B 76, 155121 (2007)

    Article  ADS  Google Scholar 

  33. A. Avella, F. Mancini, J. Phys. Chem. Solids 67, 142 (2006)

    Article  ADS  Google Scholar 

  34. A. Avella, F. Mancini, D. Villani, H. Matsumoto, Eur. Phys. J. B 20, 303 (2001)

    Article  ADS  Google Scholar 

  35. A. Avella, F. Mancini, Physica C 408, 284 (2004)

    Article  ADS  Google Scholar 

  36. J. Jȩdrzejewski, Z. Phys. B 59, 325 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  37. K. Kapcia, S. Robaszkiewicz, J. Phys.: Condens. Matter 23, 105601 (2011)

    Article  ADS  Google Scholar 

  38. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Publications, 2007)

  39. R.A. Bari, Phys. Rev. B 3, 2662 (1971)

    Article  ADS  Google Scholar 

  40. G. Beni, P. Pincus, Phys. Rev. B 9, 2963 (1974)

    Article  ADS  Google Scholar 

  41. R.S. Tu, T.A. Kaplan, Phys. Stat. Sol. B 63, 659 (1974)

    Article  ADS  Google Scholar 

  42. F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120 (2008)

    Article  ADS  Google Scholar 

  43. F. Mancini, F.P. Mancini, Eur. Phys. J. B 73, 581 (2010)

    Article  ADS  Google Scholar 

  44. K. Kapcia, W. Klobus, S. Robaszkiewicz, Acta Phys. Pol. A 118, 353 (2010)

    Google Scholar 

  45. K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1029 (2012)

    Google Scholar 

  46. M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)

    Article  ADS  Google Scholar 

  47. F. Mancini, F.P. Mancini, Cond. Mat. Phys. 11, 543 (2008)

    Article  Google Scholar 

  48. R.J. Bursill, C.J. Thompson, J. Phys. A 26, 4497 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. F. Mancini, AIP Conf. Proc. 1198, 95 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Plekhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancini, F., Plekhanov, E. & Sica, G. Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit. Eur. Phys. J. B 86, 408 (2013). https://doi.org/10.1140/epjb/e2013-40527-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40527-y

Keywords

Navigation