Skip to main content
Log in

The percolation staircase model and its manifestation in composite materials

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We studied the tunneling percolation conductivity dependence on the site or bond occupation probability in the square lattice. The model predicts that in both, lattice and continuum systems in which there is a hierarchy of the local conductances, the dependence of the global conductivity on the site or volume occupation probability will yield a conductivity staircase. In particular we evaluate the implications of the staircase on the critical behavior of the conductivity. We then show experimental evidence for the predicted percolation-tunneling staircase in a Ag-Al2O3 granular metal system and in a carbon black-polymer composite. Following that, we propose that for carbon nanotube (CNT) polymer composites the data in the literature give ample support to a percolation-dispersion staircase behavior. The implication of the present findings on the percolation-hopping problem in composite materials is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994)

  2. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983)

  3. I. Balberg, in Continuum Percolation in the Springer Encyclopedia of Complexity, edited by M. Sahimi (Springer, Berlin, 2009), Vol. 2, p. 1443

  4. P.M. Kogut, J. Straley, J. Phys. C 12, 2151 (1979)

    Article  ADS  Google Scholar 

  5. I. Balberg, Phys. Rev. Lett. 59, 1305 (1987)

    Article  ADS  Google Scholar 

  6. H. Scher, R. Zallen, J. Chem. Phys. 53, 3759 (1970)

    Article  ADS  Google Scholar 

  7. I. Balberg, Carbon 40, 139 (2002)

    Article  Google Scholar 

  8. I. Balberg, J. Phys. D 42, 064003 (2009)

    Article  ADS  Google Scholar 

  9. S. Vionnet-Menot, C. Grimaldi, T. Maeder, S. Strassler, P. Ryser, Phys. Rev. B 71, 064201 (2005)

    Article  ADS  Google Scholar 

  10. B. Abeles, P. Sheng, M.D. Coutts, Y. Arie, Adv. Phys. 24, 3689 (1975)

    Article  Google Scholar 

  11. X. Huang, C. Kim, P. Jiang, Y. Yin, Z. Lee, J. Appl. Phys. 105, 014105 (2009)

    Article  ADS  Google Scholar 

  12. V.H. Poblete, M.P. Alvarez, V.M. Funzalida, Polym. Compos. 30, 328 (2009)

    Article  Google Scholar 

  13. H. Zois, L. Apekis, M. Omastova, Macromol. Symp. 170, 249 (2001)

    Article  Google Scholar 

  14. J. Vileakova, P. Saha, O. Quadrat, Eur. Polym. J. 38, 2343 (2002)

    Article  Google Scholar 

  15. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Tech. 69, 1486 (2009)

    Article  Google Scholar 

  16. J.Z. Kovacs, B.S. Velagala, K. Schulte, W. Bauhofer, Compos. Sci. Tech. 67, 922 (2007)

    Article  Google Scholar 

  17. E. Tkalya, M. Ghislandi, A. Aleksev, C. Konig, J. Loos, J. Mater. Chem. 20, 3035 (2010)

    Article  Google Scholar 

  18. V. Panwar, B. Kang, J.-O. Park, S. Park, R.M. Mehra, Eur. Polym. J. 45, 1777 (2009)

    Article  Google Scholar 

  19. G. Ambrosetti, I. Balberg, C. Grimaldi, Phys. Rev. B 82, 134201 (2010)

    Article  ADS  Google Scholar 

  20. D. Berman, B.G. Orr, H.M. Jaeger, A.M. Goldman, Phys. Rev. B 33, 4301 (1986)

    Article  ADS  Google Scholar 

  21. S. Tyc, B.I. Halperin, Phys. Rev. B 39, 877 (1989)

    Article  ADS  Google Scholar 

  22. I. Balberg, N. Binenbaum, Phys. Rev. A 35, 5174 (1987)

    Article  ADS  Google Scholar 

  23. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

  24. S. Galam, A. Mauger, Phys. Rev. E 53, 2177 (1996)

    Article  ADS  Google Scholar 

  25. J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)

  26. A. Trohymachuk, I. Nezbeda, J. Jirsak, D. Henderson, J. Chem. Phys. 123, 024501 (2005)

    Article  ADS  Google Scholar 

  27. V.S. Kumar, V. Kumaran, J. Chem. Phys. 123, 074502 (2005)

    Article  ADS  Google Scholar 

  28. N.L. Lavik, V. Voloshin, J. Chem. Phys. 114, 9489 (2001)

    Article  ADS  Google Scholar 

  29. O. Entin-Wohlman, Y. Gefen, Y. Shapira, J. Phys. C 16, 1161 (1983)

    Article  ADS  Google Scholar 

  30. M. Mostefa, G. Olivier, J. Phys. C 18, 93 (1985)

    Article  ADS  Google Scholar 

  31. Y. Zweifel, C.J.G. Plummer, H.-H. Kausch, J. Mater. Sci. 33, 1715 (1998)

    Article  ADS  Google Scholar 

  32. B. Abeles, Appl. Solid State Sci. 6, 1 (1976)

    Article  Google Scholar 

  33. B. Abeles, H.L Pinch, J.I. Gittleman, Phys. Rev. Lett. 35, 247 (1975)

    Article  ADS  Google Scholar 

  34. I. Balberg, D. Azulay, D. Toker, O. Millo, Int. J. Mod. Phys. B 18, 2091 (2004)

    Article  ADS  MATH  Google Scholar 

  35. R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Phys. Rev. B 8, 3689 (1987)

    Article  ADS  Google Scholar 

  36. M.H. Lee, I.T.H. Chang, P.J. Dobson, B. Cantor, Mat. Sci. Eng. A 179-180, 545 (1994)

    Article  Google Scholar 

  37. O. Mamezaki, M. Fujii, S. Hayashi, Jpn J. Appl. Phys. 40, 5389 (2001)

    Article  ADS  Google Scholar 

  38. W. Bouwen, E. Kunnen, K. Temst, P. Thoen, M.J. Van Bael, F. Vanhoutte, H. Weidele, P. Lievens, R.E. Silverans, Thin Solid Films 354, 87 (1999)

    Article  ADS  Google Scholar 

  39. Y. Jiang, B. Guan, X.L. Xu, Chinese Phys. Lett. 22, 730 (2005)

    Article  ADS  Google Scholar 

  40. J. Liu, J.Z. Zhao, Z.Q. Hu, Mat. Sci. Eng. A 452-453, 103 (2007)

    Article  Google Scholar 

  41. D. Toker, D. Azulay, N. Shimoni, I. Balberg, O. Millo, Phys. Rev. B 68, 041403(R) (2003)

    Article  ADS  Google Scholar 

  42. A. Hunt, R. Ewing, Percolation Theory for Flow in Porous Media (Springer, Berlin, 2009)

  43. Z. Rubin, S.A. Sunshine, M.B. Heaney, I. Bloom, I. Balberg, Phys. Rev. B 59, 12196 (1999)

    Article  ADS  Google Scholar 

  44. S. Torquato, B. Lu, J. Rubinsein, J. Phys. A 23, L162 (1990)

    Article  Google Scholar 

  45. S. Torquato, S.B. Lee, Physica A 167, 36 (1990)

    Article  Google Scholar 

  46. R.C. Picu, A. Rakshit, J. Chem. Phys. 126, 144909 (2007)

    Article  ADS  Google Scholar 

  47. D. Brown, V. Marcdon, P. Mele, N.D. Alberola, Macromolecules 41, 1499 (2008)

    Article  ADS  Google Scholar 

  48. J.Y. Feng, J.X. Li, C.M. Chan, J. Appl. Poly. Sci. 85, 358 (2002)

    Article  Google Scholar 

  49. C. Li, E.T. Thostenson, T.W. Chou, Appl. Phys. Lett. 91, 223114 (2007)

    Article  ADS  Google Scholar 

  50. S. Samarzija-Jovanovic, V. Jovanovic, G. Markovic, M. Marinovic-Cinovic, J. Therm. Anal. Calorim. 98, 275 (2009)

    Article  Google Scholar 

  51. M.B. Heaney, Phys. Rev. B 52, 1 (1995)

    Article  Google Scholar 

  52. M.B. Heaney, Phys. Rev. B 52, 12477 (1995)

    Article  ADS  Google Scholar 

  53. M.T. Conner, S. Roy, T.A. Ezquerra, F.J. Balta Calleja, Phys. Rev. B 57, 2286 (1998)

    Article  ADS  Google Scholar 

  54. E. Sichel, J.I. Gittleman, P. Sheng, J. Electronic Mater. 11, 69 (1982)

    Article  Google Scholar 

  55. M.J. O’Connell, P. Baul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)

    Article  ADS  Google Scholar 

  56. G. Pécastaings, P. Delhaes, A. Derre, H. Saadaoui, F. Carmona, S. Cui, J. Nanosci. Nanotechnol. 4, 838 (2004)

    Article  Google Scholar 

  57. D. Untereker, S. Lyu, J. Schley, G. Martinez, L. Lohstreter, ACS Appl. Mater & Int. 1, 97 (2009)

    Article  Google Scholar 

  58. Y. Yu, G. Song, L. Sun, J. Appl. Phys. 108, 084319 (2010)

    Article  ADS  Google Scholar 

  59. Y. Simsek, L. Ozyuzer, A.T. Seyhan, M. Tanoglu, Karl, Sculte, J. Mater. Sci. 42, 7689 (2007)

    Article  Google Scholar 

  60. D. Azulay, M. Eylon, O. Eshkenazi, D. Toker, M. Balberg, O. Millo, I. Balberg, Phys. Rev. Lett. 90, 236601 (2003)

    Article  ADS  Google Scholar 

  61. S.I. White, R.M. Mutisu, P.M. Vora, D. Jahnke, S. Hsu, J.M. Kikakawa, J. Li, J.E. Fisher, K.I. Winey, Adv. Funct. Matter 20, 2709 (2010)

    Article  Google Scholar 

  62. M.-J. Jiang, Z.-M. Dang, H.-P. Xu, Appl. Phys. Lett. 90, 42914 (2007)

    Article  Google Scholar 

  63. P. Keblinski, F. Cleri, Phys. Rev. B 69, 184201 (2004)

    Article  ADS  Google Scholar 

  64. I. Balberg, N. Binenbaum, C.H. Anderson, Phys. Rev. Lett. 51, 1605 (1983)

    Article  ADS  Google Scholar 

  65. I. Balberg, B. Berkowitz, G.E. Drachsler, J. Geophys. Research: Solid Earth and Planets 96, 10015 (1991)

    Article  Google Scholar 

  66. N. Hu, Z. Masuda, C. Yan, G. Yamamoto, H. Fukunaga, T. Hhashida, Nanotechnology 19, 215701 (2008)

    Article  ADS  Google Scholar 

  67. A. Maaroufi, K. Haboubi, A. El Amarti, F. Carmona, J. Mater. Sci. 39, 265 (2004)

    Article  ADS  Google Scholar 

  68. A. Hiraiwa, T. Kobayashi, J. Appl. Phys. 70, 309 (1991)

    Article  ADS  Google Scholar 

  69. D.C. Wright D.J. Bergman, Y. Kantor, Phys. Rev. B 33, 396 (1985)

    Article  ADS  Google Scholar 

  70. I. Balberg, N. Wagner, D.W. Hearn, J.A. Ventura, Phys. Rev. Lett. 60, 1887 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Balberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balberg, I., Azulay, D., Goldstein, Y. et al. The percolation staircase model and its manifestation in composite materials. Eur. Phys. J. B 86, 428 (2013). https://doi.org/10.1140/epjb/e2013-40200-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40200-7

Keywords

Navigation