Skip to main content
Log in

Vacancy induced magnetism in WO3

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The possibility to obtain ferromagnetic (FM) phase from native defects in WO3 is investigated by theoretically analyzing six different crystalline structures. The local magnetic moment from vacancies is calculated using the projector augmented wave method in combination with the local spin density approximation including a Coulomb correction (LSDA + U) of the W d-states. We find that tungsten vacancies V W can induce a magnetic phase of ~3.5μ B /V W with a local magnetic moment on the oxygen atoms of at most ~1μ B /V W, whereas corresponding oxygen vacancies VO have no impact on the magnetic coupling. Intriguingly, although the six crystalline structures have very comparable bonds, the magnetic moment generated by the cation vacancies is different, showing higher local magnetic moments for WO3 structures with low crystalline symmetry. The results indicate that WO3:V W cannot induce a hole-mediated FM phase, and instead V W in WO3 induces a local magnetic moment on the unpaired states at surrounding O atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)

  2. R. Ganesan, A. Gedanken, Nanotechnology 19, 025702 (2008)

    Article  ADS  Google Scholar 

  3. T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, Chem. Mater. 13, 2838 (2001)

    Article  Google Scholar 

  4. I.M. Szilágyi, S. Saukko, J. Mizsei, A.L. Tóth, J. Madarász, G. Pokol, Solid State Sci. 12, 1857 (2010)

    Article  ADS  Google Scholar 

  5. S. Pokhrel, C.E. Simion, V.S. Teodorescu, N. Barsan, U. Weimar, Adv. Funct. Mater. 19, 1767 (2009)

    Article  Google Scholar 

  6. P. Villar, L. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. (ASM, Metals Park, Ohio, 1996)

  7. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  8. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Article  Google Scholar 

  9. J. Èervenka, M.I. Katsnelson, C.F.J. Flipse, Nat. Phys. 5, 840 (2009)

    Article  Google Scholar 

  10. J. Hong, J. Appl. Phys. 103, 063907 (2008)

    Article  ADS  Google Scholar 

  11. A.J. Zaleski, M. Nyk, W. Strek, Appl. Phys. Lett. 90, 042511 (2007)

    Article  ADS  Google Scholar 

  12. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, A. Ernst, Phys. Rev. B 80, 035331 (2009)

    Article  ADS  Google Scholar 

  13. N.H. Hong, J. Sakai, N. Poirot, V. Brize, Phys. Rev. B 73, 132404 (2006)

    Article  ADS  Google Scholar 

  14. S. Dae Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, J. Phys.: Condens. Matter 18, L355 (2006)

    Article  Google Scholar 

  15. P. Dev, P. Zhang, Phys. Rev. B 81, 085207 (2010)

    Article  ADS  Google Scholar 

  16. C.D. Pemmaraju, R. Hanafin, T. Archer, H.B. Braun, S. Sanvito, Phys. Rev. B 78, 054428 (2008)

    Article  ADS  Google Scholar 

  17. A. Zunger, S. Lany, H. Raebiger, Physics 3, 53 (2010)

    Article  Google Scholar 

  18. A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, R. Blinc, Physica B 406, 1673 (2011)

    Article  ADS  Google Scholar 

  19. P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010)

    Article  ADS  Google Scholar 

  20. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  21. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  22. M. Shishkin, G. Kresse, Phys. Rev. B 75, 235102 (2007)

    Article  ADS  Google Scholar 

  23. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k An augmented plane wave + local orbitals program for calculating crystal properties (Techn. Universität, Wien, 2012)

  24. N. Souza Dantas, A. Ferreira da Silva, C. Persson, Opt. Mater. 30, 1451 (2008)

    Article  ADS  Google Scholar 

  25. M.B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G.A. Niklasson, L. Österlund, J. Phys.: Condens. Matter 25, 205502 (2013)

    Article  ADS  Google Scholar 

  26. E.K.H. Salje, S. Rehman, F. Pobell, D. Morris, K.S. Knight, T. Herrmannsdörfer, M.T. Dover, J. Phys.: Condens. Matter 9, 6563 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Baldissera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldissera, G., Persson, C. Vacancy induced magnetism in WO3 . Eur. Phys. J. B 86, 273 (2013). https://doi.org/10.1140/epjb/e2013-40014-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40014-7

Keywords

Navigation