Skip to main content
Log in

The Electronic Structures and Magnetic Properties of Un-doped In2O3: the First-Principle Calculation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electronic structures and magnetic properties of native defects in cubic In2O3 are investigated systematically by the LDA + U first-principle calculations based on the density functional theory. It is found that the In2O3 system is a strongly correlated electron system; therefore, the coulomb potential of In-4d and O-2p should be considered. In this paper, the coulomb potential corrections are U In−4d=3 eV and U O−2p=5 eV. The magnetic moments of O interstitial, In vacancy, and In interstitial are 2 u B , 3 u B , and 1 u B , respectively, which are consistent with the analysis of group theory and molecular orbital theory. Moreover, the distributions of these magnetic moments are both local and extended. The magnetic couplings of O interstitials, In vacancies, and In interstitials are ferromagnetic, anti-ferromagnetic, and paramagnetic respectively, which are determined by electronic structures of defects. The formation energy of O interstitial is high, while that of the O Frenkel defect (that is the O interstitial-vacancy) is −4.98 eV. These results could provide the practical understanding to the room-temperature ferromagnetism in un-doped In2O3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prinz, G.A.: Science 282, 1660 (1998)

    Article  Google Scholar 

  2. Sharma, P., Mita, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., Gehling, G.A.: Nature Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  3. Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkami, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Sarma, S.D., Drew, H.D., Greene, R.L., Venkatesan, T.: Phys. Rev. Lett. 91, 077205 (2003)

    Article  ADS  Google Scholar 

  4. Punnoose, A., Seehra, M.S., Park, W.K., Moodera, J.S.: J. Appl. Phys. 93, 7867 (2003)

    Article  ADS  Google Scholar 

  5. Philip, J., Punnoose, A., Kim, B.I., Reddy, K.M., Layne, S., Holmes, J.O., Satpati, B., Leclair, P.R., Santos, T.S., Moodera, J.S.: Nature Mater. 5, 298 (2006)

    Article  ADS  Google Scholar 

  6. Chiu, P.T., Wessels, B.W.: Phys. Rev. B 76, 165201 (2007)

    Article  ADS  Google Scholar 

  7. Ahn, K.Y., Shafer, M.W.: J. Appl. Phys. 41, 1260 (1970)

    Article  ADS  Google Scholar 

  8. Ahn, K.Y., Pecharsky, A.O., Gschneidner, K.A., Pecharsky, V.K.: J. Appl. Phys. 97, 063901 (2007)

    Article  ADS  Google Scholar 

  9. Ott, H., Heise, S.J., Sutarto, R., Hu, Z., Chang, C.F., Hsieh, H.H., Lin, H.J., Chen, C.T., Tjeng, L.H.: Phys. Rev. B 73, 094407 (2006)

    Article  ADS  Google Scholar 

  10. Furdyna, J.K.: J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  11. Munekata, H., Ohno, H., Molnar, S., Segmuller, A., Chang, L.L., Esaki, L.: Phys. Rev. Lett. 63, 1849 (1989)

    Article  ADS  Google Scholar 

  12. Ohno, H., Munekata, H., Penney, T., Molnar, S., Chang, L.L.: Phys. Rev. Lett. 68, 2664 (1992)

    Article  ADS  Google Scholar 

  13. Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett. 69, 363 (1996)

    Article  ADS  Google Scholar 

  14. Chen, L., Yan, S., Xu, P.F., Lu, J., Wang, W.Z., Deng, J.J., Qian, X., Ji, Y., Zhao, J.H.: Appl. Phys. Lett. 95, 182505 (2009)

    Article  ADS  Google Scholar 

  15. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  16. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, T., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  17. He, J., Xu, S., Yoo, Y.K., Xue, Q., Lee, H., Cheng, S., Xiang, X.D., Dionne, G.F., Takeuchi, I.: Appl. Phys. Lett. 86, 052503 (2005)

    Article  ADS  Google Scholar 

  18. Yoo, Y.K., Xue, Q., Lee, H., Cheng, S., Xiang, X.D., Dionne, G.F., Xu, S., He, J., Chu, Y.S., Preite, S.D., Lofland, S.E., Takeuchi, I.: Appl. Phys. Lett. 86, 042506 (2005)

    Article  ADS  Google Scholar 

  19. Peleekis, G., Wang, X., Dou, S.X.: Appl. Phys. Lett. 89, 022501 (2006)

    Article  ADS  Google Scholar 

  20. Gupta, A., Cao, H., Parekh, K., Rao, K.V., Raju, A.R., Waghmare, U.V.: J. Appl. Phys. 101, 09N513 (2007)

    Google Scholar 

  21. Park, C.Y., Yoon, S.G., Jo, Y.H., Shin, S.C. Appl. Phys. Lett. 95, 22502 (2009)

    Article  ADS  Google Scholar 

  22. Subias, G., Stankiewicz, J., Villuendas, F., Lozano, M.P., Garcia, J.: Phys. Rev. B 79, 094118 (2009)

    Article  ADS  Google Scholar 

  23. Xing, G.Z., Yi, J.B., Wang, D.D., Liao, L., Yu, T., Shen, Z., Huan, C.H.A., Sum, T.C., Ding, J., Wu, T.: Phys. Rev. B 79, 174406 (2009)

    Article  ADS  Google Scholar 

  24. Guan, L.X., Tao, J.G., Huan, C.H.A., Kuo, J.L., Wang, L.: Appl. Phys. Lett. 95, 012509

  25. Ruan, K.B., Ho, H.W., Khan, R.A., Ren, P., Song, W.D., Huan, A.C.H., Wang, L.: Solid State Commun. 150, 2158 (2010)

    Article  ADS  Google Scholar 

  26. Hong, N.H., Sakai, J., Poirot, N., Brize, V.: Phys. Rev. B 73, 132404 (2006)

    Article  ADS  Google Scholar 

  27. Sudakar, C., Dixit, A., Kumar, S., Sahana, M.B., Lawes, G., Naik, R., Naik, V.M.: Scipta. Mater. 62, 6 (2010)

    Article  Google Scholar 

  28. Marezio, M.: Acta Crystallogr. 20, 723 (1966)

    Article  Google Scholar 

  29. Gurlo, A., Ivanovskaya, M., Barsan, N.: Inorg. Chem. Commun. 6, 569 (2003)

    Article  Google Scholar 

  30. Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  31. Pack, J.D., Monkhorst, H.J.: Phys, Rev. B 16, 1748 (1977)

    Article  ADS  Google Scholar 

  32. Arroyo-de Dompablo, M.E., Morales-García, A., Taravillo, M.: J. Chem. Phys. 135, 054503 (2011)

    Article  ADS  Google Scholar 

  33. Pan, F.C., Lin, X.L., Chen, H.M.: Acta Phys. Sin. 64, 176101 (2015)

    Google Scholar 

  34. Dev, P., Xue, Y., Zhang, P.: Phys. Rev. Lett. 100, 117204 (2008)

    Article  ADS  Google Scholar 

  35. Lin, X., Yan, S., Zhao, M., Hu, S., Han, C., Chen, Y., Liu, G., Dai, Y., Mei, L.: Phys. Lett. A 375, 638–641 (2011)

    Article  ADS  Google Scholar 

  36. Van de Walle, C.G., Neugebauer, J.: J. Appl. Phys. 95, 3851 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher School Science Research Outstanding Youth Fund Project of Ningxia (Grant No. NGY2015049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-chun Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Xl., Chen, Zp., Gao, H. et al. The Electronic Structures and Magnetic Properties of Un-doped In2O3: the First-Principle Calculation. J Supercond Nov Magn 29, 1533–1537 (2016). https://doi.org/10.1007/s10948-016-3438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3438-x

Keywords

Navigation