Skip to main content
Log in

Heterogenous mean-field analysis of a generalized voter-like model on networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a generalized framework for the study of voter models in complex networks at the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of further heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, (2009)

  2. B. Drossel, Adv. Phys. 50, 209 (2001)

    Article  ADS  Google Scholar 

  3. P. Clifford, A. Sudbury, Biometrika 60, 581 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Moran, Proc. Camb. Phil. Soc. 54, 60 (1958)

    Article  ADS  MATH  Google Scholar 

  5. T.M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985)

  6. P. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010)

  7. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  8. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks: From biological nets to the Internet and WWW (Oxford University Press, Oxford, 2003)

  9. M. Newman, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. K. Suchecki, V. Eguíluz, M.S. Miguel, Phys. Rev. E 72, 036132 (2005)

    Article  ADS  Google Scholar 

  11. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  12. T. Antal, S. Redner, V. Sood, Phys. Rev. Lett. 96, 188104 (2006)

    Article  ADS  Google Scholar 

  13. V. Sood, T. Antal, S. Redner, Phys. Rev. E 77, 041121 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. C.M. Schneider-Mizell, L.M. Sander, J. Stat. Phys. 136, 59 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H.X. Yang, Z.X. Wu, C. Zhou, T. Zhou, B.H. Wang, Phys. Rev. E 80, 046108 (2009)

    Article  ADS  Google Scholar 

  16. Y. Lin, H. Yang, Z. Rong, B. Wang, Int. J. Mod. Phys. C 21, 1011 (2010)

    Article  ADS  Google Scholar 

  17. A. Baronchelli, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 83, 066117 (2011)

    Article  ADS  Google Scholar 

  18. M.Á. Serrano, K. Klemm, F. Vazquez, V.M. Eguíluz, M.S. Miguel, J. Stat. Mech. P10024 (2009)

  19. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)

  20. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  21. M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002)

    Article  ADS  Google Scholar 

  22. A. Baronchelli, R. Pastor-Satorras, J. Stat. Mech. L11001 (2009)

  23. G.J. Baxter, R.A. Blythe, A.J. McKane, Phys. Rev. Lett. 101, 258701 (2008)

    Article  ADS  Google Scholar 

  24. R.A. Blythe, J. Phys. A Math. Theor. 43, 385003 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. R.A. Blythe, A.J. McKane, J. Stat. Mech. P07018 (2007)

  26. A. Baronchelli, R. Pastor-Satorras, Phys. Rev. E 82, 011111 (2010)

    Article  ADS  Google Scholar 

  27. F.R. Gantmacher, The Theory of Matrices (Chelsea Publishing Company, 1959)

  28. C. Castellano, AIP Conf. Proc. 779, 114 (2005)

    Article  ADS  Google Scholar 

  29. M.A. Nowak, Evolutionary Dynamics (Berknap, Harvard, Cambridge, 2006)

  30. M. McPherson, L.S. Lovin, J.M. Cook, Ann. Rev. Soc. 27, 415 (2001)

    Article  Google Scholar 

  31. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005)

    Article  ADS  Google Scholar 

  32. A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, Phys. Rev. E 73, 015102 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. L. Dall’Asta, C. Castellano, Europhys. Lett. 77, 60005 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Vazquez, V.M. Eguíluz, New J. Phys. 10, 063011 (2008)

    Article  Google Scholar 

  35. J. Gleeson, Phys. Rev. Lett. 107, 68701 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretti, P., Liu, S.Y., Baronchelli, A. et al. Heterogenous mean-field analysis of a generalized voter-like model on networks. Eur. Phys. J. B 85, 88 (2012). https://doi.org/10.1140/epjb/e2012-20501-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20501-1

Keywords

Navigation