Skip to main content
Log in

A Generalized Voter Model on Complex Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to disentangle the effects of the stochastic process itself relative to the network structure. We introduce a process with two steps, one that selects a pair of interacting nodes and one that determines the direction of interaction as a function of the degrees of the two nodes and a parameter α which sets the likelihood of the higher degree node giving its state to the other node. Traditional voter model behaviors can be recovered within the model, as well as the invasion process. We find that on a complete bipartite network, the voter model is the fastest process. On a random network with power law degree distribution, we observe two regimes. For modest values of α, exit time is dominated by diffusive drift of the system state, but as the high-degree nodes become more influential, the exit time becomes dominated by frustration effects dependent on the exact topology of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liggett, T.M.: Interacting Particle Systems. Springer, New York (2005)

    MATH  Google Scholar 

  2. Vazquez, F., Eguiluz, V.M.: New J. Phys. 10, 063011 (2008)

    Article  ADS  Google Scholar 

  3. Suchecki, K., Eguiluz, V.M., San Miguel, M.: Phys. Rev. E 72, 036132 (2005)

    Article  ADS  Google Scholar 

  4. Sood, V., Redner, S.: Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  5. Suchecki, K., Eguiluz, V.M., San Miguel, M.: Europhys. Lett. 69, 228 (2005)

    Article  ADS  Google Scholar 

  6. Castellano, C., Loreto, V., Barrat, A., Cecconi, F.: Phys. Rev. E 71, 066107 (2005)

    Article  ADS  Google Scholar 

  7. Baxter, G.J., Blythe, R.A., Croft, W., McKane, A.J.: Phys. Rev. E 73, 046118 (2006)

    Article  ADS  Google Scholar 

  8. Hubbell, S.P.: The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001)

    Google Scholar 

  9. Castellano, C., Fortunato, S., Loreto, V.: Rev. Modern Phys. 81(2), 591 (2009)

    Article  ADS  Google Scholar 

  10. Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  11. Baxter, G.J., Blythe, R.A., McKane, A.J.: Phys. Rev. Lett. 101(25), 258701 (2008)

    Article  ADS  Google Scholar 

  12. Castellano, C.: AIP Conf. Proc. 779, 114 (2005). ArXiv:cond-mat/0504522v1

    Article  ADS  Google Scholar 

  13. Krapivsky, P.L.: Phys. Rev. A 45(2), 1067 (1992)

    Article  ADS  Google Scholar 

  14. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  15. Newman, M.E.J.: SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Watts, D., Strogatz, S.: Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  17. Krapivsky, P.L., Redner, S.: J. Phys. A 35, 9517 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Molloy, M., Reed, B.: Random Struct. Algorithms 6, 161 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Blondel, V.D., Guillaume, J.L., Hendrickx, J., de Kerchove, C., Lambiotte, R.: Phys. Rev. E 77, 036114 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey M. Schneider-Mizell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider-Mizell, C.M., Sander, L.M. A Generalized Voter Model on Complex Networks. J Stat Phys 136, 59–71 (2009). https://doi.org/10.1007/s10955-009-9757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9757-6

Keywords

Navigation