Skip to main content
Log in

Defects in hexagonal-AlN sheets by first-principles calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Theoretical calculations focused on the stability of an infinite hexagonal AlN (h-AlN) sheet and its structural and electronic properties were carried out within the framework of DFT at the GGA-PBE level of theory. For the simulations, an h-AlN sheet model system consisting in 96 atoms per super-cell has been adopted. For h-AlN, we predict an Al-N bond length of 1.82 Å and an indirect gap of 2.81 eV as well as a cohesive energy which is by 6% lower than that of the bulk (wurtzite) AlN which can be seen as a qualitative indication for synthesizability of individual h-AlN sheets. Besides the study of a perfect h-AlN sheet, also the most typical defects, namely, vacancies, anti-site defects and impurities were also explored. The formation energies for these defects were calculated together with the total density of states and the corresponding projected states were also evaluated. The charge density in the region of the defects was also addressed. Energetically, the anti-site defects are the most costly, while the impurity defects are the most favorable, especially so for the defects arising from Si impurities. Defects such as nitrogen vacancies and Si impurities lead to a breaking of the planar shape of the h-AlN sheet and in some cases to the formation of new bonds. The defects significantly change the band structure in the vicinity of the Fermi level in comparison to the band structure of the perfect h-AlN which can be used for deliberately tailoring the electronic properties of individual h-AlN sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nalt. Acad. Sci. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  2. M. Farahani, T.S. Ahmadi, A. Seif, J. Mol. Struct. 126, 913 (2009)

    Google Scholar 

  3. S.K. Mishra, S. Satpathy, O. Jepsen, J. Phys.: Condens. Matter 9, 461 (1997)

    Article  ADS  Google Scholar 

  4. J.N. Coleman, M. Lotya, A. OŃeil et al., Science 331, 568 (2011)

    Article  ADS  Google Scholar 

  5. D. Ehrentraut, Z. Sitar, MRS Bulletin 34, 259 (2009)

    Article  Google Scholar 

  6. R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, J. Electrochem. Soc. 158, H530 (2011)

    Article  Google Scholar 

  7. A. Kakanakova-Georgieva, R.R. Ciechonski, U. Forsberg, A. Lundskog, E. Janzén, Cryst. Growth Design 9, 880 (2009)

    Article  Google Scholar 

  8. T. Oto, R.G. Banal, K. Kataoka, M. Funato, Y. Kawakami, Nat. Photon. 4, 767 (2010)

    Article  ADS  Google Scholar 

  9. Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325 (2006)

    Article  ADS  Google Scholar 

  10. A. Khan, K. Balakrishnan, T. Katona, Nat. Photon. 2, 77 (2008)

    Article  ADS  Google Scholar 

  11. O. Landré, V. Fellman, P. Jaffrennou, C. Bougerol, H. Renevier, A. Cros, B. Daudin, Appl. Phys. Lett. 96, 061912 (2010)

    Article  ADS  Google Scholar 

  12. Z.-H. Yuan, S.-Q. Sun, Y.Q. Duan, D.-J. Wang, Nanoscale Res. Lett. 4, 1126 (2009)

    Article  ADS  Google Scholar 

  13. T. Xie, Y. Lin, G. Wu, X. Yuan, Z. Jiang, C. Ye, G. Meng, L. Zhang, Inorg. Chem. Commun. 7, 545 (2004)

    Article  Google Scholar 

  14. Y. Li, Z. Zhou, P. Shen, S.B. Zhang, Z. Chen, Nanotechnology 20, 215701 (2009)

    Article  ADS  Google Scholar 

  15. Springer Handbook of Condensed Matter and Materials Data Springer Berlin-Heidelberg, edited by W. Martienssen, G. Warlimont (2005)

  16. W.-G. Jung, S.-H. Jung, P. Kung, M. Razeghi, Nanotechnology 17, 54 (2006)

    Article  ADS  Google Scholar 

  17. O. Ambacher, J. Phys. D 31, 2653 (1998)

    Article  ADS  Google Scholar 

  18. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  19. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  20. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  21. S. Azevedo, J. Kaschny, C.M.C. de Castilho, F.B. Mota, Nanotechnology 18, 495707 (2007)

    Article  Google Scholar 

  22. S. Loughin, R.H. French, W.Y. Ching, Y.N. Xu, G.A. Slack, Appl. Phys. Lett. 63, 1182 (1993)

    Article  ADS  Google Scholar 

  23. Y. Wang, S. Shi, Solid State Commun. 150, 1473 (2010)

    Article  ADS  Google Scholar 

  24. F.-L. Zheng, J.-M. Zhang, Y. Zhang, V. Ji, Physica B 405, 3775 (2010)

    Article  ADS  Google Scholar 

  25. S. Hou, J. Zhang, Z. Shen, X. Zhao, Z. Xue, Physica E 27, 45 (2005)

    Article  ADS  Google Scholar 

  26. S. Azevedo, J. Kaschny, C.M.C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

    Article  ADS  Google Scholar 

  27. R.F. Liu, C. Cheng, Phys. Rev. B 76, 014405 (2007)

    Article  ADS  Google Scholar 

  28. P. Boguslawski, E.L. Briggs, J. Bernholc, Appl. Phys. Lett. 69, 233 (1996)

    Article  ADS  Google Scholar 

  29. E. Monroy, J. Zenneck, G. Cherkashinin, O. Ambacher, M. Hermann, M. Stutzmann, M. Eickhoff, Appl. Phys. Lett. 88, 071906 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. de Brito Mota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, E.F., de Brito Mota, F., de Castilho, C.M.C. et al. Defects in hexagonal-AlN sheets by first-principles calculations. Eur. Phys. J. B 85, 48 (2012). https://doi.org/10.1140/epjb/e2011-20538-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20538-6

Keywords

Navigation