Skip to main content
Log in

Theoretical Study of the Structure and Stability of Layerwise Hydrogenated Aluminum Clusters Al44Hn and Al89Hm

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Structural parameters, energies, and spectroscopic characteristics of two series of layerwise hydrogenated aluminum clusters Al44Hn (n = 27–44) and Al89Hm (m = 15, 24, 39, and 63) have been calculated by the density functional theory method. It has been shown that increasing number of H atoms in both series entails rapid enhancement of structural distortions up to cooperative rearrangements accompanied by a change in the shape and composition of the surface layer and internal core of the cluster. At the end of the first series Al44Hn, several surface atoms migrate to the outer sphere of the cage to form valence-unsaturated “outer-surface” AlHn and Al2Hn moieties, which can be active sites at the stages of deeper hydrogenation. Simultaneously, the inner core [Al]5 disintegrates, and its atoms are introduced into the surface layer. A family of “inverted” Al42H42 isomers with the hollow [Al42] cage has been localized; the isomers contain the endohedral AlH4 group and “inner” Al-H bonds with their hydrogen end directed to the center of the inner cavity. At the end of the second series, five alanate groups AlH4 and two Al3H2 fragments bonded to the surface through hydrogen bridges are formed in the outer sphere of the \(\rm{Al}_{89}H_{63}^-\) cluster. The results are of interest for DFT modeling of hydrogenation of nanosized aluminum clusters at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Orimo, Y. Nakamori, J. R. Eliseo, et al., Chem. Rev. 107, 4111 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. J. Graetz, J. J. Reilly, V. A. Yartys, et al., J. Alloys Compd. 509S, 5517 (2011). https://doi.org/10.1016/j.jallcom2010.11.115

    Google Scholar 

  3. K.-J. Jeon, H. R. Moon, A. M. Ruminski, et al., Nature Mater. 10, 286 (2011). https://doi.org/10.1038/NMAT2978

    Article  CAS  Google Scholar 

  4. T. J. Francombe, Chem. Rev. 112, 2164 (2012).

    Article  CAS  Google Scholar 

  5. O. P. Charkin, N. M. Klimenko, D. O. Charkin, et al., Faraday Discuss. 124, 215 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. L. Andrews and X. Wang, J. Phys. Chem. A 2004, 4202 (2004).

    Article  CAS  Google Scholar 

  7. Q. Lai, M. Paskevicius, D. A. Sheppard, et al., Chem. Sus. Chem. 8, 2789 (2015). https://doi.org/10.1002/cssc.201500231

    Article  CAS  Google Scholar 

  8. X. Li, A. Grubisich, S. T. Stokes, et al., Science 315, 356 (2007). 10.126/science/1133767

    Article  CAS  PubMed  Google Scholar 

  9. J. Jung and Y.-K. Han, J. Chem. Phys. 125, 064306 (2006).

    Article  CAS  Google Scholar 

  10. P. J. Roach, A. C. Reber, W. H. Hoodwaed, et al., Proc. Natl. Acad. Sci. U.S.A. 104, 14565. https://doi.org/10.1073/PNAS.07066113104

  11. X. Li, A. Grubistich, K. H. Bowen, et al., J. Chem. Phys. 132, 241103 (2010). https://doi.org/10.1063/L3458912

    Article  CAS  PubMed  Google Scholar 

  12. B. Kiran, A. K. Kandalam, J. Xu, et al., J. Chem. Phys. 137, 134303 (2012). https://doi.org/10.1063/1.4754506

    Article  CAS  PubMed  Google Scholar 

  13. X. Zhang, H. Wang, E. Collins, et al., J. Chem. Phys. 138, 124303 (2013). https://doi.org/10.1063/L47962000

    Article  CAS  PubMed  Google Scholar 

  14. H. Wang, X. Zhang, Y. Ko, et al., J. Chem. Phys. 140, 164317 (2014). https://doi.org/10.1063/L4871884

    Article  CAS  PubMed  Google Scholar 

  15. A. Grubisic, X. Li, S. T. Stokes, et al., J. Am. Chem. Soc. 129, 5969 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. J. Moc, Chem. Phys. Lett. 116, 466 (2008).

    Google Scholar 

  17. A. Goldberg and I. Yarovsky, Phys. Rev. B 75, 195403 (2007).

    Article  CAS  Google Scholar 

  18. D. J. Henry and I. Yarovsky, J. Phys. Chem. A 113, 2565 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. O. P. Charkin, N. M. Klimenko, D. O. Charkin, Chem. Phys. 523, 112 (2019). 10.1016/j.chemphys.2019.02.007

    Article  CAS  Google Scholar 

  20. O. P. Charkin and N. M. Klimenko, Russ. J. Inorg. Chem. 63, 479 (2018).

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  24. O. P. Charkin and N. M. Klimenko, Russ. J. Inorg. Chem. 53, 1925 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Charkin.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Neorganicheskoi Khimii, 2019, Vol. 64, No. 6, pp. 613–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkin, O.P., Klimenko, N.M. Theoretical Study of the Structure and Stability of Layerwise Hydrogenated Aluminum Clusters Al44Hn and Al89Hm. Russ. J. Inorg. Chem. 64, 770–779 (2019). https://doi.org/10.1134/S0036023619060196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619060196

Keywords

Navigation