Skip to main content
Log in

Electronic transport properties of helical macromolecular chains using dihedral orbital model

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By applying the non-equilibrium Green’s function method, in combination with the dihedral orbital model, we have theoretically investigated quantum transport properties of organic molecular chains, focusing on the effects of the helical rotation of the chains. The transmission coefficient, the electronic current, as well as the current shot noise were calculated. It was found that the helical rotation modifies the transport properties profoundly. It leads to a diminishing and roughly periodical oscillatory behaviour of both the current and shot noise power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Heath, M.A. Ratner, Phys. Today 43 (2003)

  2. R.G. Endres, D.L. Cox, R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  3. G. Cuniberti, G. Fagas, K. Richter, Introducing Molecular Electronics, Lecture Notes in Physics (Springer, Berlin, 2005)

  4. Q. Zhen, D.W. Kang, X.T. Gao, S.J. Xie, Front. Phys. China 3, 349 (2008)

    Article  ADS  Google Scholar 

  5. J.R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009)

    Article  ADS  Google Scholar 

  6. Y. Zhang et al., Phys. Rev. Lett. 89, 198102 (2002)

    Article  ADS  Google Scholar 

  7. H.W. Fink, C. Schonenberger, Nature 398, 407 (1999)

    Article  ADS  Google Scholar 

  8. B. Xu, P. Zhang, X. Li, N. Tao, Nano Lett. 4, 1105 (2004)

    Article  ADS  Google Scholar 

  9. L. Cai, H. Tabata, T. Kawai, Nanotechnology 12, 211 (2001)

    Article  ADS  Google Scholar 

  10. M.S. Xu, R.G. Endres, S. Tsukamoto, M. Kitamura, S. Ishida, Y. Arakawa, Small 1, 1168 (2005)

    Article  Google Scholar 

  11. E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D.A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, D. Porath, Nature Mater. 7, 68 (2008)

    Article  ADS  Google Scholar 

  12. S. Roy, H. Vedala, A.D. Roy, D.-H. Kim, M. Doud, K. Mathee, H.-K. Shin, N. Shimamoto, V. Prasad, W. Choi, Nano Lett. 8, 26 (2008)

    Article  ADS  Google Scholar 

  13. H. Cohen, C. Nogues, R. Naaman, D. Porath, Proc. Natl. Acad. Sci. USA 102, 11589 (2005)

    Article  ADS  Google Scholar 

  14. A.Y. Kasumov et al., Science 291, 280 (2001)

    Article  ADS  Google Scholar 

  15. P. Maragakis, R.L. Barnett, E. Kaxiras, M. Elstner, T. Frauenheim, Phys. Rev. B 66, 241104 (2002)

    Article  ADS  Google Scholar 

  16. G. Cuniberti, L. Craco, D. Porath, C. Dekker, Phys. Rev. B 65, 241314 (2002)

    Article  ADS  Google Scholar 

  17. T. Kleine-Ostmann, C. Jordens, K. Baaske, Appl. Phys. Lett. 88, 102102 (2006)

    Article  ADS  Google Scholar 

  18. A.M. Guo, S.J. Xiong, Z. Yang, H.J. Zhu, Phys. Rev. E 78, 061922 (2008)

    Article  ADS  Google Scholar 

  19. H.B. Gray, J.R. Winkler, Ann. Rev. Biochem. 110, 8865 (1996)

    Google Scholar 

  20. R. Langen, I. Chang, J. Germanas, J. Richards, J. Winkler, H. Gray, Science 268, 1733 (1995)

    Article  ADS  Google Scholar 

  21. C. Moser, J. Keske, K. Warncke, R. Farid, P. Dutton, Nature 355, 796 (1992)

    Article  ADS  Google Scholar 

  22. C. Page, C. Moser, X. Chen, P. Dutton, Nature 402, 47 (1999)

    Article  ADS  Google Scholar 

  23. J. Ladik, A. Bende, F. Bogar, J. Chem. Phys. 127, 055102 (2007)

    Article  ADS  Google Scholar 

  24. A.A. Voityuk, J. Chem. Phys. 128, 115101 (2008)

    Article  ADS  Google Scholar 

  25. Y. Zhu, C.-C. Kaun, H. Guo, Phys. Rev. B 69, 245112 (2004)

    Article  ADS  Google Scholar 

  26. X.F. Wang, T. Chakraborty, Phys. Rev. Lett. 97, 106602 (2006)

    Article  ADS  Google Scholar 

  27. E.M. Conwell, S.M. Bloch, P.M. McLaughlin, D.M. Basko, J. Am. Chem. Soc. 129, 9175 (2007)

    Article  Google Scholar 

  28. C.-T. Shih, S. Roche, R.A. Romer, Phys. Rev. Lett. 100, 018105 (2008)

    Article  ADS  Google Scholar 

  29. H. Yamada, K. Iguchi, arXiv:1003.5604v2

  30. E. Estrada, J. Phys. Chem. B 111, 13611 (2007)

    Article  Google Scholar 

  31. E. Estrada, N. Hatano, Chem. Phys. Lett. 449, 216 (2007)

    Article  ADS  Google Scholar 

  32. E. Estrada, E. Uriarte, S. Vilar, J. Proteome Res. 5, 105 (2006)

    Article  Google Scholar 

  33. S. Datta, Electronic Trnsport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  34. E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D.A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, D. Porath, Nature Mater. 7, 68 (2008)

    Article  ADS  Google Scholar 

  35. R.G. Endres, D.L. Cox, R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  36. Ya. M. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  37. L. Saminadayar, D.C. Glattli, Y. Jin, B. Etienne, Phys. Rev. Lett. 79, 2526 (1997)

    Article  ADS  Google Scholar 

  38. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature 389, 162 (1997)

    Article  ADS  Google Scholar 

  39. M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, C. Schoenberger, Science 284, 296 (1999)

    Article  ADS  Google Scholar 

  40. W.D. Oliver, J. Kim, R.C. Liu, Y. Yamamoto, Science 284, 299 (1999)

    Article  ADS  Google Scholar 

  41. S.S. Safonov, A.K. Savchenko, D.A. Bagrets, O.N. Jouravlev, Y.V. Nazarov, E.H. Linfield, D.A. Ritchie, Phys. Rev. Lett. 91, 136801 (2003)

    Article  ADS  Google Scholar 

  42. P. Roche, J. Segala, D.C. Glattli, J.T. Nicholls, M. Pepper, A.C. Graham, K.J. Thomas, M.Y. Simmons, D.A. Ritchie, Phys. Rev. Lett. 93, 116602 (2004)

    Article  ADS  Google Scholar 

  43. L. DiCarlo, Y. Zhang, D.T. McClure, D.J. Reilly, C.M. Marcus, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 97, 036810 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G.Y. Electronic transport properties of helical macromolecular chains using dihedral orbital model. Eur. Phys. J. B 83, 77 (2011). https://doi.org/10.1140/epjb/e2011-20275-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20275-x

Keywords

Navigation