Skip to main content
Log in

Itinerant electron model and conductance of DNA

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

DNA (Deoxyribonucleic acid) has recently caught the attention of chemists and physicists. A major reason for this interest is DNA’s potential use in nanoelectronic devices, both as a template for assembling nanocircuits and as an element of such circuits. However, the electronic properties of the DNA molecule remain very controversial. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and band-gap insulators to effective molecular wires and induced superconductors. In this review article, we summarize the wide-ranging experimental and theoretical results of charge transport in DNA. An itinerant electron model is suggested and the effect of the density of itinerant electrons on the conductivity of DNA is studied. Calculations show that a DNA molecule may show conductivity from insulating to metallic, which explains the controversial and profuse electric characteristics of DNA to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Warman, M. P. de Haas, and A. Rupprecht, Chem. Phys. Lett., 1996, 249(5–6): 319

    Article  ADS  Google Scholar 

  2. S. Luryi, J. Xu, and A. Zaslavsky, Future Trends in Microelectronics, USA, New York: John Wiley & Sons Inc., 1999: 87

    Google Scholar 

  3. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408(6812): 541

    Article  ADS  Google Scholar 

  4. J. M. Tour, Acc. Chem. Res., 2000, 33(11): 791

    Article  Google Scholar 

  5. A. Aviram and M. A. Ratner, Chem. Phys. Lett., 1974, 29(2): 277

    Article  ADS  Google Scholar 

  6. A. Aviram and M. A. Ratner (eds.), Molecular Electronics Science and Technology: Annals of the New York Academy of Sciences, New York: The New York Academy of Sciences, 1998, Vol. 852

    Google Scholar 

  7. A. Aviram, M. A. Ratner, and V. Mujica, Molecular Electronics II: Annals of the New York Academy of Sciences, New York: The New York Academy of Sciences, 2002, Vol. 960

    Google Scholar 

  8. C. P. Collier, E. W. Wong, M. Bolohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science, 1999, 285: 391

    Article  Google Scholar 

  9. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampario, F. M. Raymo, and J. R. Heath, Science, 2001, 289: 1172

    Article  ADS  Google Scholar 

  10. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature, 1998, 391(6669): 775

    Article  ADS  Google Scholar 

  11. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun, Science, 2002, 297: 72

    Article  ADS  Google Scholar 

  12. R. Rinaldi, A. Biasco, G. Maruccio, V. Arima, P. Visconti, R. Cingolani, P. Facci, F. De Rienzo, R. Di Felice, E. Molinari, M. P. Verbeet, and G. W. Canters, Appl. Phys. Lett., 2003, 82(3): 472

    Article  ADS  Google Scholar 

  13. R. Rinaldi, E. Branca, R. Cingolani, R. Di Felice, A. Calzolari, E. Molinari, S. Masiero, G. Spada, G. Gottarelli, and A. Garbesi, Annals of the New York Academy of Sciences, 2002, 960: 184

    Google Scholar 

  14. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Nature, 2001, 414(6845): 430

    Article  ADS  Google Scholar 

  15. S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooji, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, Nature, 2001, 412(6847): 617

    Article  ADS  Google Scholar 

  16. W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Nature, 2002, 417(6890): 725

    Article  ADS  Google Scholar 

  17. J. M. Lehn, Angew. Chem. Int. Ed, 1990, 29(11): 1304

    Article  Google Scholar 

  18. C. M. Niemeyer, Angew. Chem. Int. Ed., 1997, 36(6): 585

    Article  Google Scholar 

  19. C. M. Niemeyer, Angew. Chem. Int. Ed., 2001, 40(22): 4128

    Article  Google Scholar 

  20. T. La Bean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman, J. Am. Chem. Soc., 2000, 122(9): 1848

    Article  Google Scholar 

  21. N. C. Seeman, Nano Lett., 2001, 1: 22

    Article  ADS  Google Scholar 

  22. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Phys. Rev. Lett., 2002, 89: 198102

    Article  ADS  Google Scholar 

  23. C. Dekker and M. A. Ratner, Physics World, 2001, 14: 29

    Google Scholar 

  24. D. D. Eley and D. I. Spivey, Trans. Faraday. Soc., 1962, 12: 245

    Google Scholar 

  25. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, and J. K. Barton, Science, 1993, 262: 1025

    Article  ADS  Google Scholar 

  26. A. M. Brun and A. Harriman, J. Am. Chem. Soc., 1992, 114(10): 3656

    Article  Google Scholar 

  27. A. M. Brun and A. Harriman, J. Am. Chem. Soc., 1994, 116(23): 10383

    Article  Google Scholar 

  28. A. Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945

    Article  Google Scholar 

  29. P. Lincoln, E. Tuite, and B. Norden, J. Am. Chem. Soc., 1997, 119(6): 1454

    Article  Google Scholar 

  30. B. Giese, Annu. Rev. Biochem., 2002, 71: 51

    Article  Google Scholar 

  31. E. M. Boon, and J. K. Barton, Curr. Opin. Struc. Biol., 2002, 12: 320

    Article  Google Scholar 

  32. P. T. Henderson, D. Jones, G. Hampikian, Y. Kan, and G. B. Schuster, Proc. Natl. Acad. Sci. USA, 1999, 96(15): 8353

    Article  ADS  Google Scholar 

  33. F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. GreenfIeld, and M. R. Wasielewski, Science, 1997, 277: 673

    Article  Google Scholar 

  34. A. A. Voityuk, J. Jortner, M. Bixon, and N. Rosch, Chem. Phys. Lett., 2000, 324(53): 430

    Article  ADS  Google Scholar 

  35. C. Gómez-Navarro, A. Gil, M. Alvarez, P. J. De Pablo, F. Moreno-Herrero, I. Horcas, R. Fernandez-Sánchez, J. Colchero, J. Gómez Herrero, and A. M. Barb, Nanotechnology, 2002, 13: 314

    Article  ADS  Google Scholar 

  36. A. Gil, P. J. De Pablo, J. Colchero, J. Gómez Herrero, and A. M. Baró, Nanotechnology, 2002, 13: 309

    Article  ADS  Google Scholar 

  37. C. Gómez-Navarro, F. Moreno-Herrero, P. J. De Pablo, J. Colchero, Gómez Herrero J., and A. M. Baró, Proc. Natl. Acad. Sci. USA, 2002, 99(13): 8484

    Article  ADS  Google Scholar 

  38. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L. P. Kouwenhoven, M. W. Wu, and L. L. Sohn, Nano Lett., 2002, 2: 187

    Article  ADS  Google Scholar 

  39. P. Tran, B. Alavi, and G. Gruner, Phys. Rev. Lett., 2000, 85: 1564

    Article  ADS  Google Scholar 

  40. H.-W. Fink and C. Schonenberger, Nature, 1999, 398(6726): 407

    Article  ADS  Google Scholar 

  41. H.-W. Fink, Mol. Life Sci., 2001, 58: 1

    Article  Google Scholar 

  42. H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, J. Opt. Soc. Am. A, 1997, 14: 2168

    Article  ADS  Google Scholar 

  43. P. J. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. M. Baró, P. Ordejón, J. M. Soler, and E. Artacho, Phys. Rev. Lett., 2000, 85: 4992

    Article  ADS  Google Scholar 

  44. J. M. Lee, S. K. Ahn, K. S. Kim, Y. Lee, and Y. Roh, Thin Solid Films, 2006, 515: 818

    Article  ADS  Google Scholar 

  45. J. S. Lee, L. J. P. Latimer, and R. S. Reid, Biochem. Cell Biol., 1993, 71: 162

    Article  Google Scholar 

  46. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature, 2000, 403(6770): 635

    Article  ADS  Google Scholar 

  47. A. Bezryadin and C. Dekker, J. Vac. Sci. Technol. B, 1997, 15(4): 793

    Article  Google Scholar 

  48. A. Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett., 1997, 71: 1273

    Article  ADS  Google Scholar 

  49. K.-H. Yoo, D. H. Ha, J.-O. Lee, J. W. Park, J. Kim, J. J. Kim, H.-Y. Lee, T. Kawai, and H. Y. Choi, Phys. Rev. Lett., 2001, 87(19): 198102

    Article  ADS  Google Scholar 

  50. H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, and M. Shimizu, Appl. Phys. Lett., 2001, 79(15): 462

    Article  Google Scholar 

  51. L. Cai, H. Tabata, and T. Kawai, Appl. Phys. Lett., 2000, 77(19): 3105

    Article  ADS  Google Scholar 

  52. T. Kanno, H. Tanaka, N. Miyoshi, and T. Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892

    Article  ADS  Google Scholar 

  53. T. Kanno, H. Tanaka, N. Miyoshi, and T. Kawai, Appl. Phys. Lett., 2000, 77: 3848

    Article  ADS  Google Scholar 

  54. T. Kanno, H. Tanaka, N. Miyoshi, M. Fukuda, and T. Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892

    Article  ADS  Google Scholar 

  55. J. S. Hwang, G. S. Lee, K. J. Kong, D. J. Ahn, S. W. Hwang, and D. Ahn, Microelectron. Eng., 2002, 63(1–3): 161

    Article  Google Scholar 

  56. J. S. Hwang, G. S. Lee, D. Ahn, G. S. Lee, D. J. Ahn, and S. W. Hwang, Appl. Phys. Lett., 2002, 81(6):1134

    Article  ADS  Google Scholar 

  57. Private communication

  58. T. Muir, E. Morales, J. Root, I. Kumar, B. Garcia, C. Vellandi, D. Jenigian, T. Marsh, E. Henderson, and J. Vesenka, J. Vac. Sci. Technol. A, 1998, 16(3): 1172

    Article  ADS  Google Scholar 

  59. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Phys. Rev. Lett., 2002, 89: 189102

    Google Scholar 

  60. K. W. Hipps, Science, 2001, 294: 536

    Article  Google Scholar 

  61. X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science, 2001, 294: 571

    Article  ADS  Google Scholar 

  62. D. H. Ha, H. Nham, K.-H. Yoo, H. So, H. Y. Lee, and T. Kawai, Chem. Phys. Lett., 2002, 355(53): 405

    Article  ADS  Google Scholar 

  63. H.-Y. Lee, H. Tanaka, Y. Otsuka, K.-H. Yoo, J.-O. Lee, and T. Kawai, Appl. Phys. Lett., 2002, 80: 1670

    Article  ADS  Google Scholar 

  64. T. Kleine-Ostmann, C. Jördens, and K. Baaske, Appl. Phys. Lett., 2006, 88: 102102

    Article  ADS  Google Scholar 

  65. K. S. Kim, S. K. Ahn, Y. Lee, J. M. Lee, and Y. Roh, J. Korea. Phys. Soc., 2005, 47: S535

    Google Scholar 

  66. K. S. Kim, S. K. Ahn, Y. Lee, J. M. Lee, and Y. Roh, Thin Solid Films, 2006, 515: 822

    Article  ADS  Google Scholar 

  67. P. Maragakis, R. L. Barnett, E. Kaxiras, M. Elstner, and T. Frauenheim, Phys. Rev. B, 2002, 66: 241104

    Article  ADS  Google Scholar 

  68. H. Wang, J. P. Lewis, and O. F. Sankey, Phys. Rev. Lett., 2004, 93: 016401

    Article  ADS  Google Scholar 

  69. R. Di Felice, A. Calzolari, E. Molinari, and A. Garbesi, Phys. Rev. B, 2001, 65(4): 045104

    Article  Google Scholar 

  70. H. Ymada, E. B. Starikov, D. Hennig, and J. F. R. Archilla, Eur. Phys. J. E, 2005, 17: 149

    Article  Google Scholar 

  71. S. Priyadarshy, S. M. Risser, and D. N. Beratan, J. Biol. Inorg. Chem., 1998, 3(2): 196

    Article  Google Scholar 

  72. E. S. Krider and T. J. Meade, J. Biol. Inorg. Chem., 1998, 3(2): 210

    Article  Google Scholar 

  73. T. L. Netzel, J. Biol. Inorg. Chem., 1998, 3(2): 210

    Article  Google Scholar 

  74. D. N. Beratan, S. Priyadarshy, and S. M. Risser, Chem. Biol., 1997, 4(1): 3

    Article  Google Scholar 

  75. M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel Beyerle, and J. Jortner, Proc. Natl. Acad. Sci. USA, 1999, 96: 11713

    Article  ADS  Google Scholar 

  76. M. Bixon and J. Jortner, J. Phys. Chem. B, 2000, 104: 3906

    Article  Google Scholar 

  77. J. Jortner, M. Bixon, A. Voityuk, and N. Rosch, J. Phys. Chem. A, 2002, 106(33): 7599

    Article  Google Scholar 

  78. A. A. Voityuk, N. Rosch, M. Bixon, and J. Jortner, J. Phys. Chem. B, 2000, 104: 9740

    Article  Google Scholar 

  79. E. C. Grozema, Y. A. Berlin, and L. D. A. Siebbeles, J. Am. Chem. Soc., 2000, 122(51): 10903

    Article  Google Scholar 

  80. Y.-J. Ye, R. S. Chen, F. Chen, J. Sun, and J. Ladik, Solid State Commun., 2001, 119(3): 175

    Article  ADS  Google Scholar 

  81. G. Brunaud, F. Castet, A. Fritsch, and L. Ducasse, Phys. Chem. Chem. Phys., 2002, 4: 6072

    Article  Google Scholar 

  82. D. Bicout and E. Kats, Phys. Lett. A, 2002, 300(4–5): 479

    Article  ADS  Google Scholar 

  83. Y. Berlin, A. L. Burin, and M. A. Ratner, J. Phys. Chem. A, 2000, 104: 443

    Article  Google Scholar 

  84. Y. Berlin, A. L. Burin, and M. A. Ratner, J. Am. Chem. Soc., 2001, 123(2): 260

    Article  Google Scholar 

  85. Y. Berlin, A. L. Burin, L. D. A. Siebbeles, and M. A. Ratner, J. Phys. Chem. A, 2001, 105: 5666

    Article  Google Scholar 

  86. Y. A. Berlin, A. L. Burin, and M. A. Ratner, Superlattice Microstruct., 2000, 28(241): 241

    Article  ADS  Google Scholar 

  87. Y. A. Berlin, A. L. Burin, and M. A. Ratner, Chem. Phys., 2002, 275(1–3): 61

    Article  ADS  Google Scholar 

  88. X. Li and Y. Yan, J. Chem. Phys., 2001, 115(9): 4169

    Article  ADS  Google Scholar 

  89. X. Li, H. Y. Zhang, and Y. Yan, J. Phys. Chem. A, 2001, 105(51): 9563

    Article  Google Scholar 

  90. X. Li and Y. Yan, Appl. Phys. Lett., 2001, 79: 2190

    Article  ADS  Google Scholar 

  91. G. Cuniberti, L. Craco, D. Porath, and C. Dekker, Phys. Rev. B, 2002, 65: 241314

    Article  ADS  Google Scholar 

  92. Y. Zhu, C. C. Kann, and H. Guo, Phys. Rev. B., 2004, 69: 245112

    Article  ADS  Google Scholar 

  93. X. F. Wang and T. Chakraborty, Phys. Rev. Lett., 2006, 97: 106602

    Article  ADS  Google Scholar 

  94. B. Giese, J. Amaudrut, A. K. Köhler, M. Spormann, and S. Wessely, Nature, 2001, 412: 318

    Article  ADS  Google Scholar 

  95. Z. G. Yu and X. Song, Phys. Rev. Lett., 2001, 86: 6018

    Article  ADS  Google Scholar 

  96. J. H. Wei and K. S. Chan, J. Phys.: Condens. Matter, 2007, 19: 286101

    Article  Google Scholar 

  97. A. V. Malyshev, Phy. Rev. Lett., 2007, 98: 096801

    Article  ADS  Google Scholar 

  98. E. Maci, F. Triozon, and S. Roche, Phys. Rev. B, 2005, 71: 113106

    Article  ADS  Google Scholar 

  99. J. Yi and B. J. Kim, Phys. Rev. B, 2007, 75: 035111

    Article  ADS  Google Scholar 

  100. B. Xu and P. Zhang, X. Li, and N. Tao, Nano Lett., 2004, 4: 1105

    Article  ADS  Google Scholar 

  101. W. P. Su and J. R. Schrieffer, Proc. Natl. Acad. Sci. USA, 1980, 77: 5626

    Article  ADS  Google Scholar 

  102. E. M. Conwell, Phys. Rev. B, 1998, 57: R12670

    Article  ADS  Google Scholar 

  103. S. V. Rakhmanova and E. M. Conwell, Appl. Phys. Lett., 1999, 75: 1518

    Article  ADS  Google Scholar 

  104. G. M. Silva, Phys. Rev. B, 2000, 61: 10777

    Article  ADS  Google Scholar 

  105. C.da S. Pinheiro and G. M. e Silva, Phys. Rev. B, 2002, 65: 094304

    Article  ADS  Google Scholar 

  106. Å. Johansson and S. Stafström, Phys. Rev. Lett., 2001, 86: 3602

    Article  ADS  Google Scholar 

  107. Å. Johansson and S. Stafström, Phys. Rev. B, 2003, 68: 035206

    Article  ADS  Google Scholar 

  108. A. A. Johansson and S. Stafström, Phys. Rev. B, 2004, 69: 235205

    Article  ADS  Google Scholar 

  109. Yu J. F., Wu C. Q., Sun X., and K. Nasu, Phys. Rev. B, 2004, 70: 064303

    Article  ADS  Google Scholar 

  110. X. J. Liu, K. Cao, J. Y. Fu, Y. Li, J. H. Wei, and S. J. Xie, Phys. Rev. B, 2006, 74: 172301

    Article  ADS  Google Scholar 

  111. Y. Li, X. J. Liu, J. Y. Fu, D. S. Liu, S. J. Xie, and L. M. Mei, Phys. Rev. B, 2006, 74: 184303

    Article  ADS  Google Scholar 

  112. K. Gao, X. J. Liu, D. S. Liu, and S. J. Xie, Phys. Rev. B, 2007, 75: 205412

    Article  ADS  Google Scholar 

  113. V. D. Lakhno, J. Biol. Phys., 2001, 26(2): 133

    Article  Google Scholar 

  114. Z. Hermon, S. Caspi, and E. Ben-Jacob, Europhys. Lett., 1998, 43(4): 482

    Article  ADS  Google Scholar 

  115. E. M. Conwell and S. V. Rakhmanova, Proc. Natl. Acad. Sci. USA, 2000, 97: 4556

    Article  ADS  Google Scholar 

  116. S. V. Rakhmanova and E. M. Conwell, J. Phys. Chem. B, 2001, 105: 2056

    Article  Google Scholar 

  117. E. M. Conwell and D. M. Basko, Synthetic Metals, 2003, 137: 1381

    Article  Google Scholar 

  118. J. H. Park, H. Y. Choi, and E. M. Conwell, J. Phys. Chem. B, 2004, 108: 19483

    Article  Google Scholar 

  119. E. M. Conwell, J. H. Park, and H. Y. Choi, J. Phys. Chem. B, 2005, 109: 9760

    Article  Google Scholar 

  120. E. M. Conwell and S. M. Bloch, J. Phys. Chem. B, 2006, 110: 5801

    Article  Google Scholar 

  121. D. Ly, Y. Kan, B. Armitage, and G. B. Schuster, J. Am. Chem. Soc., 1996, 118(36): 8747

    Article  Google Scholar 

  122. D. Ly, L. Sanii, and G. B. Schuster, J. Am. Chem. Soc., 1999, 121(40): 9400

    Article  Google Scholar 

  123. B. Zheng, J. Wu, W. Q. Sun, and C. B. Liu, Chem. Phys. Lett., 2006, 425: 123

    Article  ADS  Google Scholar 

  124. D. T. Breslin, J. E. Coury, J. R. Anderson, L. McFail-Isom, Y. Kan, L. D. Williams, L. A. Bottomley, and G. B. Schuster, J. Am. Chem. Soc., 1997, 119(21): 5043

    Article  Google Scholar 

  125. S. M. Casper and G. B. Schuster, J. Am. Chem. Soc., 1997, 119(52): 12762

    Article  Google Scholar 

  126. J. H. Wei, L. X. Wang, K. S. Chan, and Y. J. Yan, Phys. Rev. B, 2005, 72: 064304

    Article  ADS  Google Scholar 

  127. G. B. Schuster, Acc. Chem. Res., 2000, 33(4): 253

    Article  Google Scholar 

  128. B. Armitage, D. Ly, T. Koch, H. Frydenlund, H. Orum, H. G. Baand, and G. B. Schuster, Proc. Natl. Acad. Sci. USA, 1997, 94: 12320

    Article  ADS  Google Scholar 

  129. D. Hennig, J. F. R. Archilla, and J. Agarwal, Physica D, 2003, 180: 256

    ADS  MATH  Google Scholar 

  130. D. Hennig, E. B. Starikov, J. F. R. Archilla, and F. Palmero, J. Bio. Phys., 2004, 30: 227

    Article  Google Scholar 

  131. D. Hennig and J. F. R. Archilla, Physica A, 2004, 331: 579

    Article  ADS  Google Scholar 

  132. R. Bruinsma, G. Gruner, M. R. D. Orsogna, and J. Rudnick, Phys. Rev. Lett., 2000: 85

  133. R. N. Barnett, C. L. Cleveland, A. Joy, U. Landman, and G. B. Schuste, Science, 2001, 294: 567

    Article  ADS  Google Scholar 

  134. M. Hjort and S. Stafstrom, Phys. Rev. Lett., 2001, 87: 228101

    Article  ADS  Google Scholar 

  135. C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, Part 3: The Behavior of Biological Macromolecules, Chapter 19, New York: W. H. Freeman and Company, 1980: 1207

    Google Scholar 

  136. F. C. Grozema, L. D. A. Siebbeles, Y. A. Berlin, and M. A. Ratner, Chem. Phys. Chem., 2002, 3: 536

    Google Scholar 

  137. M. Zwolak and M. Di Ventra, Appl. Phys. Lett., 2002, 81: 925

    Article  ADS  Google Scholar 

  138. X. F. Wang and T. Chakraborty, Phys. Rev. B, 2006, 74: 193103

    Article  ADS  Google Scholar 

  139. A. D. Stone, J. D. Joannopoulos, and D. J. Chadi, Phys. Rev. B, 1981, 24: 5583

    Article  ADS  MathSciNet  Google Scholar 

  140. E. Macia, Phys. Rev. B, 1999, 60: 10032

    Article  ADS  Google Scholar 

  141. A. Harriman, Angew. Chem. Int. Ed., 1999, 38(7): 945

    Article  Google Scholar 

  142. P. Carpena, P. Bernaola-Galán, P. C. Ivanov, and H. E. Stanley, Nature (London), 2003, 421(6924): 764

    Article  ADS  Google Scholar 

  143. P. Carpena, P. Bernaola-Galán, P. C. Ivanov, and H. E. Stanley, Nature (London), 2002, 418(6901): 955

    Article  ADS  Google Scholar 

  144. S. Roche, D. Bicout, E. Macia, and E. Kats, Phys. Rev. Lett., 2003, 91: 228101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-jie Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Z., Kang, Dw., Gao, Xt. et al. Itinerant electron model and conductance of DNA. Front. Phys. China 3, 349–364 (2008). https://doi.org/10.1007/s11467-008-0029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-008-0029-8

Keywords

PACS numbers

Navigation