Skip to main content
Log in

Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work we make a predictive study on the binding energy of the ground state for hydrogenic donor impurity in vertically-coupled quantum-dot structure, considering the combined effects of hydrostatic pressure and in growth-direction applied electric field. The approach uses a variational method within the effective mass approximation. The low dimensional structure consists of three cylindrical shaped GaAs quantum-dots, grown in the z-direction and separated by Ga1-xAlxAs barriers. In order to include the pressure dependent Γ – X crossover in the barrier material a phenomenological model is followed. The main findings can be summarized as follows: 1) for symmetrical and asymmetrical dimensions of the structures, the binding energy as a function of the impurity position along the growth direction of the heterostructure has a similar behavior to that shown by the non-correlated electron wave function with maxima for the impurity in the well regions and minima for the impurity in the barrier regions, 2) for increasing radius of the system, the binding energy decreases and for R large enough reaches the limit of the binding energy in a coupled quantum well heterostructure, 3) the binding energy increases for higher Aluminum concentration in the barrier regions, 4) depending of the impurity position and of the structural dimensions of the system (well width and barrier thickness) – and because changing the height of the potential barrier makes possible to induce changes in the degree of symmetry of the carrier-wave function –, the electric field and hydrostatic pressure can cause the impurity binding energy increases or decreases, and finally 5) the line-shape of the binding energy curves are mainly given by the line-shape of the Coulomb interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  2. J.M. Smith, P.C. Klipstein, R. Grey, G. Hill, Phys. Rev. B 57, 1740 (1998)

    Article  ADS  Google Scholar 

  3. N. Dai, D. Huang, X.Q. Liu, Y.M. Mu, W. Lu, S.C. Shen, Phys. Rev. B 57, 6566 (1998)

    Article  ADS  Google Scholar 

  4. A. Ciucivara, B.R. Sahu, L. Kleinman, Phys. Rev. B 73, 214105 (2006)

    Article  ADS  Google Scholar 

  5. J. Endicott, A. Patanè, D. Maude, L. Eaves, M. Hopkinson, G. Hill, Phys. Rev. B 72, R041306 (2005)

    Article  ADS  Google Scholar 

  6. M. Barati, M.R.K. Vahdani, G. Rezaei, J. Phys.: Condens. Matter 19, 136208 (2007)

    Article  ADS  Google Scholar 

  7. A.M. Elabsy, J. Phys.: Condens. Matter 6, 10025 (1994)

    Article  ADS  Google Scholar 

  8. S.Y. López, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. (c) 0, 648 (2003)

    Article  Google Scholar 

  9. A.L. Morales, A. Montes, S.Y. López, N. Raigoza, C.A. Duque, Phys. Stat. Sol. (c) 0, 652 (2003)

    Article  Google Scholar 

  10. C.A. Duque, S.Y. López, M.E. Mora-Ramos, Phys. Stat. Sol. (b) 244, 1964 (2007)

    Article  Google Scholar 

  11. M.E. Mora-Ramos, S.Y. López, C.A. Duque, Physica E 40, 1212 (2008)

    Article  ADS  Google Scholar 

  12. M.E. Mora-Ramos, S.Y. López, C.A. Duque, Eur. Phys. J. B 62, 257 (2008)

    Article  ADS  Google Scholar 

  13. J.W. González, N. Porras-Montenegro, C.A. Duque, Braz. J. Phys. 36, 944 (2006)

    Article  Google Scholar 

  14. J.D. Correa, N. Porras-Montenegro, C.A. Duque, Braz. J. Phys. 36, 387 (2006)

    Article  Google Scholar 

  15. E. Kasapoglu, U. Yesilgül, H. Sari, I. Sökmen, Physica B 368, 76 (2005)

    Article  ADS  Google Scholar 

  16. S.G. Jayam, K. Navaneethakrishnan, Solid State Communications 126, 681 (2003)

    Article  ADS  Google Scholar 

  17. A.J. Peter, Physica E 28, 225 (2005)

    Article  ADS  Google Scholar 

  18. S.T. Pérez-Merchancano, H. Paredes-Gutierrez, J. Silva-Valencia, J. Phys.: Condens. Matter 19, 026225 (2007)

    Article  ADS  Google Scholar 

  19. M.G. Barseghyan, A.A. Kirakosyan, C.A. Duque, Phys. Stat. Sol (b) 246, 626 (2009)

    Article  Google Scholar 

  20. M.E. Mora-Ramos, A.H. Rodríguez, S.Y. López, C.A. Duque, PIERS Online 4, 263 (2008)

    Article  Google Scholar 

  21. M.E. Mora-Ramos, C.A. Duque, Braz. J. Phys. 36, 866 (2006)

    Article  Google Scholar 

  22. M.E. Mora-Ramos, C.A. Duque, J. Phys. Conf. Series 167, 012030 (2009)

    Article  ADS  Google Scholar 

  23. O. Oubram, M.E. Mora-Ramos, L.M. Gaggero-Sager, J. Phys. Conf. Series 167, 012031 (2009)

    Article  ADS  Google Scholar 

  24. O. Oubram, M.E. Mora-Ramos, L.M. Gaggero-Sager, Eur. Phys. J. B 71, 233 (2009)

    Article  Google Scholar 

  25. U. Venkateswaran, M. Chandrasekhar, H.R. Chandrasekhar, T. Wolfram, R. Fischer, W.T. Masselink, H. Morkoç, Phys. Rev. B 31, 4106 (1985)

    Article  ADS  Google Scholar 

  26. J.H. Burnett, H.M. Cheong, W. Paul, E.S. Koteles, B. Elman, Phys. Rev. B 47, 1991 (1993)

    Article  ADS  Google Scholar 

  27. A.L. Morales, A. Montes, S.Y. López, C.A. Duque, J. Phys.: Condens. Matter 14, 987 (2002)

    Article  ADS  Google Scholar 

  28. A.L. Morales, N. Raigoza, A. Montes, N. Porras-Montenegro, C.A. Duque, Phys. Stat. Sol. (b) 241, 3224 (2004)

    Article  ADS  Google Scholar 

  29. E. Kasapoglu, Phys. Lett. A 373, 140 (2008)

    Article  ADS  Google Scholar 

  30. Z.G. Bai, J.-J. Liu, J. Phys.: Condens. Matter 19, 346218 (2007)

    Article  Google Scholar 

  31. J.-J. Liu, M. Shen, S.-W. Wang, J. Appl. Phys. 101, 073703 (2007)

    Article  ADS  Google Scholar 

  32. A. Neogi, H. Morkocü, T. Kuroda, A. Tackeuchi, T. Kawazoe, M. Ohtsu, Nano Lett. 5, 213 (2005)

    Article  ADS  Google Scholar 

  33. G.J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O.G. Schmidt, P. Michler, Phys. Rev. Lett. 96, 137401 (2006)

    Article  ADS  Google Scholar 

  34. H.J. Krenner, M. Sabathil, E.C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, J.J. Finley, Phys. Rev. Lett. 94, 057402 (2005)

    Article  ADS  Google Scholar 

  35. M. Yamagiwa, T. Mano, T. Kuroda, T. Tateno, K. Sakoda, G. Kido, N. Koguchi, F. Minami, Appl. Phys. Lett. 89, 113115 (2006)

    Article  ADS  Google Scholar 

  36. S. Bednarek, T. Chwiej, J. Adamowski, B. Szafran, Phys. Rev. B 67, 205316 (2003)

    Article  ADS  Google Scholar 

  37. B. Szafran, T. Chwiej, F.M. Peeters, S. Bednarek, J. Adamowski, B. Partoens, Phys. Rev. B 71, 205316 (2005)

    Article  ADS  Google Scholar 

  38. T. Chwiej, S. Bednarek, J. Adamowski, B. Szafran, F.M. Peeters, J. Luminescence 112, 122 (2005)

    Article  ADS  Google Scholar 

  39. B. Szafran, F.M. Peeters, S. Bednarek, Phys. Rev. B 75, 115303 (2007)

    Article  ADS  Google Scholar 

  40. B. Szafran, E. Barczyk, F.M. Peeters, S. Bednarek, Phys. Rev. B 77, 115441 (2008)

    Article  ADS  Google Scholar 

  41. J.-L. Zheng, Pysica E 40, 2879 (2008)

    Article  ADS  Google Scholar 

  42. A. Hospodková, V. K.rápek, K. Kuldová, J. Humlíček, E. Hulicius, J. Oswald, J. Pangrác, J. Zeman, Physica E 36, 106 (2007)

    Article  ADS  Google Scholar 

  43. L.-Z. Liu, J.-J. Liu, J. Appl. Phys. 102, 033709 (2007)

    Article  ADS  Google Scholar 

  44. W. Xie, Physica B 366, 89 (2005)

    Article  ADS  Google Scholar 

  45. J.-B. Xia, W.-J. Fan, Phys. Rev. B 40, 8508 (1989)

    Article  ADS  Google Scholar 

  46. As mentioned, here we assume the parabolic-band approximation within the effective-mass approach and note that this approximation has worked quite well in the study by Dzyubenko and Yablonskii [47] of GaAs/InxGa1−x As coupled QWs

  47. A.B. Dzyubenko, A.L. Yablonskii, Phys. Rev. B 53, 16355 (1996)

    Article  ADS  Google Scholar 

  48. K. Chang, F.M. Peeters, Phys. Rev. B 63, 153307 (2001)

    Article  ADS  Google Scholar 

  49. L.P. Gorkov, I.E. Dzyaloshinskii, Soviet Physics JETP 26, 449 (1968)

    ADS  Google Scholar 

  50. Yu.E. Lozovik, I.V. Ovchinnikov, S.Yu. Volkov, L.V. Butov, D.S. Chemla, Phys. Rev. B 65, 235304 (2002)

    Article  ADS  Google Scholar 

  51. A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, W.Y. Jan, Phys. Rev. B 44, 6231 (1991)

    Article  ADS  Google Scholar 

  52. I. Galbraith, G. Duggan, Phys. Rev. B 40, 5515 (1989)

    Article  ADS  Google Scholar 

  53. D.S. Chemla, J. Lumin. 30, 502 (1985)

    Article  Google Scholar 

  54. A.L. Morales, N. Raigoza, E. Reyes-Gómez, J.M. Osorio-Guillén, C.A. Duque, Superlatt. Microstruct. 45, 590 (2009)

    Article  ADS  Google Scholar 

  55. E.H. Li, Physica E 5, 215 (2000)

    Article  ADS  Google Scholar 

  56. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque. Phys. Rev. B 69, 045323 (2004)

    Article  ADS  Google Scholar 

  57. D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  58. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Duque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duque, C., Barseghyan, M. & Duque, C. Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field. Eur. Phys. J. B 73, 309–319 (2010). https://doi.org/10.1140/epjb/e2009-00433-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00433-7

Keywords

Navigation