Skip to main content
Log in

Constructing probability density function of net-proton multiplicity distributions using Pearson curve method

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The probability density functions of proton, anti-proton, and net-proton multiplicity distributions are constructed from the Beam Energy Scan results of the STAR experiment using the Pearson curve method. The constructed distributions of proton and anti-proton are compared with Poisson and Binomial distributions. The net-proton probability distributions are compared with Skellam distributions to study the O(4) criticality near the chiral crossover transition. The \(C_{6}/C_{2}\) results estimated from the obtained PDFs are compared with Skellam and Binomial baselines for the Beam Energy Scan data. The current study shows some signatures of O(4) criticality, which can be further investigated by precision measurements of the cumulants and understanding the contribution of non-critical fluctuations to them. This study also provides a baseline for the higher order cumulant measurement in the upcoming RHIC BES II program and future LHC run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The data used for this work can be found from Ref [21, 22].]

Notes

  1. The Skellam distribution used in Ref. [26] is different than the one used in Ref. [27].

  2. In fact with increasing the \(|\Delta N_{p}|\), \(C_6\) oscillates from very high positive value to negative value before converging with its exact value, which is not visible in the current scale of Fig. 4

References

  1. R.D. Pisarski, F. Wilczek, Phys. Rev. D 29, 338 (1984)

    Article  ADS  Google Scholar 

  2. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  3. S. Ejiri, Phys. Rev. D 78, 074507 (2008)

    Article  ADS  Google Scholar 

  4. E.S. Bowman, J.I. Kapusta, Phys. Rev. C 79, 015202 (2009)

    Article  ADS  Google Scholar 

  5. M.A. Stephanov, PoS LAT 2006, 024 (2006)

    Google Scholar 

  6. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)

    Article  Google Scholar 

  7. Y. Hatta, T. Ikeda, Phys. Rev. D 67, 014028 (2003)

    Article  ADS  Google Scholar 

  8. O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C 64, 045202 (2001)

    Article  ADS  Google Scholar 

  9. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, Phys. Rev. D 58, 096007 (1998)

    Article  ADS  Google Scholar 

  10. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999)

    Article  ADS  Google Scholar 

  11. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998)

    Article  ADS  Google Scholar 

  12. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Article  ADS  Google Scholar 

  13. F. Karsch, K. Redlich, Phys. Lett. B 695, 136 (2011)

    Article  ADS  Google Scholar 

  14. B. Friman, F. Karsch, K. Redlich, V. Skokov, Eur. Phys. J. C 71, 1694 (2011)

    Article  ADS  Google Scholar 

  15. A. Bazavov et al., Phys. Rev. Lett. 109, 192302 (2012)

    Article  ADS  Google Scholar 

  16. S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 111, 062005 (2013)

    Article  ADS  Google Scholar 

  17. S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 113, 052301 (2014)

    Article  ADS  Google Scholar 

  18. Y. Hatta, M.A. Stephanov, Phys. Rev. Lett. 91, 102003 (2003)

    Article  ADS  Google Scholar 

  19. L. Adamczyk et al., STAR Collaboration. Phys. Rev. Lett. 112, 032302 (2014)

    Article  ADS  Google Scholar 

  20. X. Luo [STAR Collaboration], PoS CPOD 2014, 019 (2015)

  21. J. Adam et al. [STAR], Phys. Rev. Lett. 126(9), 092301 (2021)

  22. M. Abdallah et al. [STAR], Phys. Rev. C 104(2), 024902 (2021)

  23. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  24. A. Bzdak, V. Koch, V. Skokov, Eur. Phys. J. C 77(5), 288 (2017)

    Article  ADS  Google Scholar 

  25. K. Morita, B. Friman, K. Redlich, V. Skokov, Phys. Rev. C 88(3), 034903 (2013)

    Article  ADS  Google Scholar 

  26. K. Morita, V. Skokov, B. Friman, K. Redlich, Eur. Phys. J. C 74, 2706 (2014)

    Article  ADS  Google Scholar 

  27. K. Morita, B. Friman, K. Redlich, Phys. Lett. B 741, 178 (2015)

    Article  ADS  Google Scholar 

  28. Karl Pearson, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 186, 343–414 (1895)

    Article  ADS  Google Scholar 

  29. Karl Pearson, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 197, 443–459 (1901)

    Article  ADS  Google Scholar 

  30. J. H. Pollard, A Handbook of Numerical and Statistical Techniques. Cambridge University Press. ISBN 0-521-29750 (1977)

  31. O. Podladchikova, B. Lefebvre, V. Krasnoselskikh, V. Podladchikov, Nonlinear processes in geophysics. Eur. Geosci. Union (EGU) 10, 323–333 (2003)

    Google Scholar 

  32. Wolfram Research, Inc. Mathematica, Version 11.2. Champaign (2017)

  33. A. Pandav, D. Mallick, B. Mohanty, Nucl. Phys. A 991, 121608 (2019)

    Article  Google Scholar 

  34. P. Garg, D.K. Mishra, P.K. Netrakanti, B. Mohanty, A.K. Mohanty, B.K. Singh, N. Xu, Phys. Lett. B 726, 691 (2013)

    Article  ADS  Google Scholar 

  35. P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, Phys. Lett. B 747, 292 (2015)

    Article  ADS  Google Scholar 

  36. T.J. Tarnowsky, G.D. Westfall, Phys. Lett. B 724, 51 (2013)

    Article  ADS  Google Scholar 

  37. A. Bzdak, V. Koch, D. Oliinychenko, J. Steinheimer, Phys. Rev. C 98(5), 054901 (2018)

    Article  ADS  Google Scholar 

  38. D. Thakur, S. Jakhar, P. Garg, R. Sahoo, Phys. Rev. C 95(4), 044903 (2017)

    Article  ADS  Google Scholar 

  39. P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960, 114 (2017)

    Article  ADS  Google Scholar 

  40. M. Abdallah et al., STAR. Phys. Rev. Lett. 127, 262301 (2021)

    Article  ADS  Google Scholar 

  41. X. Luo, N. Xu, Nucl. Sci. Technol. 28(8), 112 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the STAR Collaboration for providing the preliminary data during the initial phase of this study. The author acknowledges R. Bellweid, S. Dash, K. Morita and B. K. Nandi for their valuable suggestions during the preparation of this manuscript. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A5A1025563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirbhay Kumar Behera.

Additional information

Communicated by R. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, N.K., Kweon, M.J. Constructing probability density function of net-proton multiplicity distributions using Pearson curve method. Eur. Phys. J. A 58, 43 (2022). https://doi.org/10.1140/epja/s10050-022-00696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00696-9

Navigation