Skip to main content
Log in

Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Fluctuations of conserved quantities, such as baryon, electric charge, and strangeness number, are sensitive observables in relativistic heavy-ion collisions to probe the QCD phase transition and search for the QCD critical point. In this paper, we review the experimental measurements of the cumulants (up to fourth order) of event-by-event net-proton (proxy for net-baryon), net-charge and net-kaon (proxy for net-strangeness) multiplicity distributions in Au+Au collisions at \(\sqrt{{s}_{\text{NN}}}=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200\) GeV from the first phase of beam energy scan program at the relativistic heavy-ion collider (RHIC). We also summarize the data analysis methods of suppressing the volume fluctuations, auto-correlations, and the unified description of efficiency correction and error estimation. Based on theoretical and model calculations, we will discuss the characteristic signatures of critical point as well as backgrounds for the fluctuation observables in heavy-ion collisions. The physics implications and the future second phase of the beam energy scan (2019–2020) at RHIC will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. S. Gupta, X. Luo, B. Mohanty et al., Scale for the phase diagram of quantum chromodynamics. Science 332, 1525–1528 (2011). doi:10.1126/science.1204621

    Article  Google Scholar 

  2. M.M. Aggarwal et al. (STAR Collaboration), An experimental exploration of the QCD phase diagram: the search for the critical point and the onset of de-confinement. arXiv: 1007.2613

  3. STAR Note 0598: BES-II whitepaper.http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

  4. Y. Aoki, G. Endrodi, Z. Fodor et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006). doi:10.1038/nature05120

    Article  Google Scholar 

  5. P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential. Nucl. Phys. B 642, 290–306 (2002). doi:10.1016/S0550-3213(02)00626-0

    Article  MATH  Google Scholar 

  6. G. Endrődi, Z. Fodor, S.D. Katz et al., J. High Energy Phys. 2011, 1 (2011). doi:10.1007/JHEP04(2011)001

    Article  Google Scholar 

  7. K. Rajagopal, F. Wilczek, At the Frontier of Particle Physics/Handbook of QCD (World Scientific, Singapore, 2001)

    MATH  Google Scholar 

  8. Z. Fodor, S.D. Katz, Critical point of QCD at finite T and \(\mu \), lattice results for physical quark masses. J. High Energy Phys. 04, 050 (2004)

    Article  Google Scholar 

  9. R.V. Gavai, QCD critical point: the race is on. Pramana 84, 757–771 (2015). doi:10.1007/s12043-015-0983-y

    Article  Google Scholar 

  10. M. Stephanov, K. Rajagopal, E. Shuryak, Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816 (1998). doi:10.1103/PhysRevLett.81.4816

    Article  Google Scholar 

  11. M. Stephanov, K. Rajagopal, E. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999). doi:10.1103/PhysRevD.60.114028

    Article  Google Scholar 

  12. S. Jeon, V. Koch, Fluctuations of particle ratios and the abundance of hadronic resonances. Phys. Rev. Lett. 83, 5435 (1999). doi:10.1103/PhysRevLett.83.5435

    Article  Google Scholar 

  13. M. Asakawa, U. Heinz, B. Müller, Fluctuation probes of Quark deconfinement. Phys. Rev. Lett. 85, 2072 (2000). doi:10.1103/PhysRevLett.85.2072

    Article  Google Scholar 

  14. V. Koch, A. Majumder, J. Randrup, Baryon–Strangeness correlations: a diagnostic of strongly interacting matter. Phys. Rev. Lett. 95, 182301 (2005). doi:10.1103/PhysRevLett.95.182301

    Article  Google Scholar 

  15. S. Ejiri, F. Karsch, K. Redlich, Hadronic fluctuations at the QCD phase transition. Phys. Lett. B 633, 275–282 (2006). doi:10.1016/j.physletb.2005.11.083

    Article  Google Scholar 

  16. C. Athanasiou, K. Rajagopal, M. Stephanov, Using higher moments of fluctuations and their ratios in the search for the QCD critical point. Phys. Rev. D 82, 074008 (2010). doi:10.1103/PhysRevD.82.074008

    Article  Google Scholar 

  17. M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). doi:10.1103/PhysRevLett.102.032301

    Article  Google Scholar 

  18. M.A. Stephanov, Sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 107, 052301 (2011). doi:10.1103/PhysRevLett.107.052301

    Article  Google Scholar 

  19. B. Schaefer, M. Wagner, QCD critical region and higher moments for three-flavor models. Phys. Rev. D 85, 034027 (2012). doi:10.1103/PhysRevD.85.034027

    Article  Google Scholar 

  20. Y. Hatta, M.A. Stephanov, Proton-number fluctuation as a signal of the QCD critical end point. Phys. Rev. Lett. 91, 102003 (2003). doi:10.1103/PhysRevLett.91.102003

    Article  Google Scholar 

  21. H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). doi:10.1142/S0218301315300076

    Article  MATH  Google Scholar 

  22. R.V. Gavai, S. Gupta, Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions. Phys. Lett. B 696, 459–463 (2011). doi:10.1016/j.physletb.2011.01.006

    Article  Google Scholar 

  23. M. Cheng, P. Hegde, C. Jung et al., Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature. Phys. Rev. D 79, 074505 (2009). doi:10.1103/PhysRevD.79.074505

    Article  Google Scholar 

  24. A. Bazavov, T. Bhattacharya, C.E. DeTar et al., Fluctuations and correlations of net baryon number, electric charge, and strangeness: a comparison of lattice QCD results with the hadron resonance gas model. Phys. Rev. D 86, 034509 (2012). doi:10.1103/PhysRevD.86.034509

    Article  Google Scholar 

  25. A. Bazavov, H.-T. Ding, P. Hegde et al., Freeze-out conditions in heavy ion collisions from QCD thermodynamics. Phys. Rev. Lett. 109, 192302 (2012). doi:10.1103/PhysRevLett.109.192302

    Article  Google Scholar 

  26. B. Friman, F. Karsch, K. Redlich et al., Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC. Eur. Phys. J. C 71, 1694 (2011). doi:10.1140/epjc/s10052-011-1694-2

    Article  Google Scholar 

  27. B. Friman, Probing the QCD phase diagram with fluctuations. Nucl. Phys. A 928, 198–208 (2014). doi:10.1016/j.nuclphysa.2014.04.012

    Article  Google Scholar 

  28. B. Friman, F. Karsch, K. Redlich, V. Skokov et al., Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC. Eur. Phys. J. C 71, 1694 (2011). doi:10.1140/epjc/s10052-011-1694-2

    Article  Google Scholar 

  29. K. Morita, B. Friman, K. Redlich, Criticality of the net-baryon number probability distribution at finite density. Phys. Lett. B 741, 178–183 (2015). doi:10.1016/j.physletb.2014.12.037

    Article  Google Scholar 

  30. M. Asakawa, S. Ejiri, M. Kitazawa, Third moments of conserved charges as probes of QCD phase structure. Phys. Rev. Lett. 103, 262301 (2009). doi:10.1103/PhysRevLett.103.262301

    Article  Google Scholar 

  31. T. Andrews, Bakerian lecture: on the continuity of the gaseous and liquid states of matter. Proc. R. Soc. Lond. 18, 42–45 (1869)

    Article  Google Scholar 

  32. P. Braun-Munzinger, J. Wambach, Colloquium: phase diagram of strongly interacting matter. Rev. Mod. Phys. 81, 1031 (2009). doi:10.1103/RevModPhys.81.1031

    Article  Google Scholar 

  33. S. Datta, R.V. Gavai, S. Gupta, The QCD critical point: marching towards continuum. Nucl. Phys. A 904, 883c–886c (2013). doi:10.1016/j.nuclphysa.2013.02.156

    Article  Google Scholar 

  34. S. Datta, R.V. Gavai, S. Gupta, Quark number susceptibilities and equation of state at finite chemical potential in staggered QCD with Nt=8. Phys. Rev. D 95, 054512 (2017). doi:10.1103/PhysRevD.95.054512

    Article  Google Scholar 

  35. F. Karsch et al., Conserved charge fluctuations from lattice QCD and the beam energy scan. Nucl. Phys. A 956, 352–355 (2016). doi:10.1016/j.nuclphysa.2016.01.008

    Article  Google Scholar 

  36. F. Karsch, Presentation at CPOD2016, Wrocław, Poland. http://ift.uni.wroc.pl/~cpod2016/Karsch.pdf

  37. F. Karsch, Lattice QCD results on cumulant ratios at freeze-out. J. Phys. Conf. Ser. 779, 012015 (2017). doi:10.1088/1742-6596/779/1/012015

    Article  Google Scholar 

  38. F. Karsch, Presentation at INT Workshop 2016, Seattle, US. http://www.int.washington.edu/talks/WorkShops/int_16_3/People/Karsch_F/Karsch.pdf

  39. X.-Y. Xin, S.-X. Qin, Y.-X. Liu et al., Quark number fluctuations at finite temperature and finite chemical potential via the Dyson–Schwinger equation approach. Phys. Rev. D 90, 076006 (2014). doi:10.1103/PhysRevD.90.076006

    Article  Google Scholar 

  40. C. Shi, Y.-L. Wang, Y. Jiang et al., Locate QCD critical end point in a continuum model study. J. High Energy Phys. 7, 14 (2014). doi:10.1007/JHEP07(2014)014

    Article  Google Scholar 

  41. C.S. Fischer, J. Luecker, C.A. Welzbacher, Phase structure of three and four flavor QCD. Phys. Rev. D 90, 034022 (2014). doi:10.1103/PhysRevD.90.034022

    Article  Google Scholar 

  42. B. Berche, M. Henkel, R. Kenna, Revista Brasileira de Ensino de Física, Critical phenomena: 150 years since Cagniard de la Tour 31, 2602–2601 (2009)

  43. K.G. Wilson, J. Kogut, The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–199 (1974). doi:10.1016/0370-1573(74)90023-4

    Article  Google Scholar 

  44. M. Stephanov, QCD phase diagram and the critical point. Int. J. Mod. Phys. A 20, 4387 (2005). doi:10.1142/S0217751X05027965

    Article  Google Scholar 

  45. B. Berdnikov, K. Rajagopal, Slowing out of equilibrium near the QCD critical point. Phys. Rev. D 61, 105017 (2000). doi:10.1103/PhysRevD.61.105017

    Article  Google Scholar 

  46. S. Jeon, V. Koch, Event by event fluctuations. Quark–Gluon Plasma 3, 430–490 (2004). doi:10.1142/9789812795533_0007

    MATH  Google Scholar 

  47. V. Koch, Hadronic fluctuations and correlations. Landolt Börnstein 23, 626–652 (2010). doi:10.1007/978-3-642-01539-7_20

    Google Scholar 

  48. F. Karsch, K. Redlich, Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations. Phys. Lett. B 695, 136–142 (2011). doi:10.1016/j.physletb.2010.10.046

    Article  Google Scholar 

  49. J. Fu, Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out. Phys. Lett. B 722, 144–150 (2013). doi:10.1016/j.physletb.2013.04.018

    Article  MATH  Google Scholar 

  50. J. Fu, Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws. arXiv:1610.07138

  51. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974). doi:10.1103/PhysRevD.10.2445

    Article  Google Scholar 

  52. A. Bazavov, T. Bhattacharya, C. Detar et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). doi:10.1103/PhysRevD.90.094503

    Article  Google Scholar 

  53. A. Bazavov, H.-T. Ding, P. Hegde et al., QCD equation of state to O(\(\mu ^6_B\)) from lattice QCD. Phys. Rev. D 95, 054504 (2017). doi:10.1103/PhysRevD.95.054504

    Article  Google Scholar 

  54. X. Luo, Error estimation for moment analysis in heavy-ion collision experiment. J. Phys. G Nucl. Part. Phys. 39, 025008 (2012). doi:10.1088/0954-3899/39/2/025008

    Article  Google Scholar 

  55. X. Luo, Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions. Phys. Rev. C 91, 034907 (2015). doi:10.1103/PhysRevC.91.034907 [Erratum: Phys. Rev. C 94, 059901 (2016). doi10.1103/PhysRevC.94.059901]

  56. W.K. Fan, X.F. Luo, H.S. Zong, Susceptibilities of conserved charges within a modified Nambu–Jona–Lasinio model. arXiv: 1608.07903

  57. J.-W. Chen, J. Deng, L. Labun, Baryon susceptibilities, non-Gaussian moments, and the QCD critical point. Phys. Rev. D 92, 054019 (2015). doi:10.1103/PhysRevD.92.054019

    Article  Google Scholar 

  58. J.-W. Chen, J. Deng, H. Kohyama et al., Robust characteristics of non-Gaussian fluctuations from the NJL model. Phys. Rev. D 93, 034037 (2016). doi:10.1103/PhysRevD.93.034037

    Article  Google Scholar 

  59. M. Nahrgang, C. Herold, Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (\(\text{ N }\chi \) FD). Eur. Phys. J. A 52, 240 (2016). doi:10.1140/epja/i2016-16240-9

    Article  Google Scholar 

  60. C. Herold, M. Nahrgang, Y. Yan et al., Dynamical net-proton fluctuations near a QCD critical point. Phys. Rev. C 93, 021902(R) (2016). doi:10.1103/PhysRevC.93.021902

    Article  Google Scholar 

  61. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein et al., Scaled variance, skewness, and kurtosis near the critical point of nuclear matter. Phys. Rev. C 92, 054901 (2015). doi:10.1103/PhysRevC.92.054901

    Article  Google Scholar 

  62. M. Bluhm, M. Nahrgang, S.A. Bass et al., Impact of resonance decays on critical point signals in net-proton fluctuations. Eur. Phys. J. C 77, 210 (2017). doi:10.1140/epjc/s10052-017-4771-3

    Article  Google Scholar 

  63. M. Bluhm, M. Nahrgang, S.A. Bass et al., Behavior of universal critical parameters in the QCD phase diagram. J. Phys. Conf. Ser. 779, 012074 (2017). doi:10.1088/1742-6596/779/1/012074

    Article  Google Scholar 

  64. A. Mukherjee, J. Steinheimer, S. Schramm, Higher-order baryon number susceptibilities: interplay between the chiral and the nuclear liquid–gas transitions. arXiv: 1611.10144

  65. S. Mukherjee, R. Venugopalan, Y. Yin, Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram. Phys. Rev. Lett. 117, 222301 (2016). doi:10.1103/PhysRevLett.117.222301

    Article  Google Scholar 

  66. V.V. Begun, V. Vovchenko, M.I. Gorenstein, Updates to the p+p and A+A chemical freeze-out lines from the new experimental data. J. Phys. Conf. Ser. 779, 012080 (2017). doi:10.1088/1742-6596/779/1/012080

    Article  Google Scholar 

  67. M. Asakawa, M. Kitazawa, Progress in particle and nuclear physics 90, 299. Prog. Part. Nucl. Phys. 90, 299–342 (2016). doi:10.1016/j.ppnp.2016.04.002

    Article  Google Scholar 

  68. Y. Ohnishi, M. Kitazawa, M. Asakawa, Thermal blurring of event-by-event fluctuations generated by rapidity conversion. Phys. Rev. C 94, 044905 (2016). doi:10.1103/PhysRevC.94.044905

    Article  Google Scholar 

  69. M. Kitazawa, Rapidity window dependences of higher order cumulants and diffusion master equation. Nucl. Phys. A 942, 65–96 (2015). doi:10.1016/j.nuclphysa.2015.07.008

    Article  Google Scholar 

  70. P. Garg, D.K. Mishra, P.K. Netrakanti et al., Conserved number fluctuations in a hadron resonance gas model. Phys. Lett. B 726, 691–696 (2013). doi:10.1016/j.physletb.2013.09.019

    Article  Google Scholar 

  71. M. Nahrgang, M. Bluhm, P. Alba et al., Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas. Eur. Phys. J. C 75, 573 (2015). doi:10.1140/epjc/s10052-015-3775-0

    Article  Google Scholar 

  72. X. Luo, B. Mohanty, N. Xu, Baseline for the cumulants of net-proton distributions at STAR. Nucl. Phys. A 931, 808–813 (2014). doi:10.1016/j.nuclphysa.2014.08.105

    Article  Google Scholar 

  73. T.J. Tarnowsky, G.D. Westfall, First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions. Phys. Lett. B 724, 51–55 (2013). doi:10.1016/j.physletb.2013.05.064

    Article  Google Scholar 

  74. S. He, X. Luo, Y. Nara et al., Effects of nuclear potential on the cumulants of net-proton and net-baryon multiplicity distributions in Au+Au collisions at \(\sqrt{S_\text{ NN }}=5\) GeV. Phys. Lett. B 762, 296–300 (2016). doi:10.1016/j.physletb.2016.09.053

    Article  Google Scholar 

  75. A. Bzdak, V. Koch, V. Skokov, Baryon number conservation and the cumulants of the net proton distribution. Phys. Rev. C 87, 014901 (2013). doi:10.1103/PhysRevC.87.014901

    Article  Google Scholar 

  76. K. Fukushima, Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations. Phys. Rev. C 91, 044910 (2015). doi:10.1103/PhysRevC.91.044910

    Article  Google Scholar 

  77. Z.W. Lin, C.M. Ko, B.-A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi:10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  78. M. Bleicher, E. Zabrodin, C. Spieles et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G Nucl. Part. Phys. 25(9), 1859 (1999). doi:10.1088/0954-3899/25/9/308

    Article  Google Scholar 

  79. M. Kitazawa, M. Asakawa, Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions. Phys. Rev. C 85, 021901(R) (2012). doi:10.1103/PhysRevC.85.021901

    Article  Google Scholar 

  80. M. Kitazawa, M. Asakawa, Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions. Phys. Rev. C 86, 024904 (2012). doi:10.1103/PhysRevC.86.024904 [Erratum 86, 069902 (2012). doi:10.1103/PhysRevC.86.069902]

  81. B. Ling, M.A. Stephanov, Acceptance dependence of fluctuation measures near the QCD critical point. Phys. Rev. C 93, 034915 (2016). doi:10.1103/PhysRevC.93.034915

    Article  Google Scholar 

  82. A. Bzdak, V. Koch, N. Strodthoff, Cumulants and correlation functions vs the QCD phase diagram. arXiv: 1607.07375

  83. Y. Nara, N. Otuka, A. Ohnishi et al., Relativistic nuclear collisions at \(10A\) GeV energies from \(p\)+Be to Au+Au with the hadronic cascade model. Phys. Rev. C 61, 024901 (1999). doi:10.1103/PhysRevC.61.024901

    Article  Google Scholar 

  84. X. Luo (for the STAR Collaboration), probing the QCD critical point with higher moments of net-proton multiplicity distributions. J. Phys. Conf. Ser. 316, 012003 (2011). doi:10.1088/1742-6596/316/1/012003

  85. X. Luo, J. Xu, B. Mohanty et al., Volume fluctuation and auto-correlation effects in the moment analysis of net-proton multiplicity distributions in heavy-ion collisions. J. Phys. G 40(10), 105104 (2013). doi:10.1088/0954-3899/40/10/105104

    Article  Google Scholar 

  86. A. Bzdak, V. Koch, Acceptance corrections to net baryon and net charge cumulants. Phys. Rev. C 86, 044904 (2012). doi:10.1103/PhysRevC.86.044904

    Article  Google Scholar 

  87. A. Bzdak, V. Koch, Local efficiency corrections to higher order cumulants. Phys. Rev. C 91, 027901 (2015). doi:10.1103/PhysRevC.91.027901

    Article  Google Scholar 

  88. M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high-energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205–243 (2007). doi:10.1146/annurev.nucl.57.090506.123020

    Article  Google Scholar 

  89. H.-J. Xu, Cumulants of multiplicity distributions in most-central heavy-ion collisions. Phys. Rev. C 94, 054903 (2016). doi:10.1103/PhysRevC.94.054903

    Article  Google Scholar 

  90. H.-J. Xu, Importance of volume corrections on the net-charge distributions at the RHIC BES energies, CPOD 2016 proceedings. arXiv:1610.08591

  91. P. Braun-Munzinger, A. Rustamov, J. Stachel, Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions. Nucl. Phys. A 96, 114–130 (2017). doi:10.1016/j.nuclphysa.2017.01.011

    Article  Google Scholar 

  92. V. Skokov, B. Friman, K. Redlich, Volume fluctuations and higher-order cumulants of the net baryon number. Phys. Rev. C 88, 034911 (2013). doi:10.1103/PhysRevC.88.034911

    Article  Google Scholar 

  93. H.-J. Xu, Effects of volume corrections and resonance decays on cumulants of net-charge distributions in a Monte Carlo hadron resonance gas model. Phys. Lett. B 765, 188–192 (2017). doi:10.1016/j.physletb.2016.12.015

    Article  Google Scholar 

  94. A. Bzdak, V. Koch, V. Skokov, Correlated stopping, proton clusters and higher order proton cumulants (2016). arXiv:1612.05128

  95. B.I. Abelev et al. (STAR Collaboration), Systematic measurements of identified particle spectra in \(pp\), \(d\)+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 79, 034909 (2009). doi:10.1103/PhysRevC.79.034909

  96. M. Kitazawa, Efficient formulas for efficiency correction of cumulants. Phys. Rev. C 93, 044911 (2016). doi:10.1103/PhysRevC.93.044911

    Article  Google Scholar 

  97. A. Bzdak, R. Holzmann, V. Koch, Multiplicity-dependent and nonbinomial efficiency corrections for particle number cumulants. Phys. Rev. C 94, 064907 (2016). doi:10.1103/PhysRevC.94.064907

    Article  Google Scholar 

  98. Anirban DasGupta, Asymptotic Theorey of Statistics and Probability (Springer, Berlin, 2008)

    Google Scholar 

  99. J. Bai, S. Ng, Tests for skewness, kurtosis, and normality for time series data. J. Bus. Econ. Stat. 23(1), 49–60 (2005). doi:10.1198/073500104000000271

    Article  MathSciNet  Google Scholar 

  100. G. Maurice, M.A. Kendall, The Advanced Theory of Statistics, vol. 1 (Charles Griffin & Company Limited, London, 1945)

    MATH  Google Scholar 

  101. L. Adamczyk et al. (STAR Collaboration), Energy dependence of moments of net-proton multiplicity distributions at RHIC. Phys. Rev. Lett. 112, 032302 (2014). doi:10.1103/PhysRevLett.112.032302

  102. L. Adamczyk et al. (STAR Collaboration), Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 113, 092301 (2014). doi:10.1103/PhysRevLett.113.092301

  103. J. Xu, Talk at RHIC & AGS User Meeting (2016). https://www.bnl.gov/aum2016/content/workshops/Workshop_1b/xu_ji.pdf

  104. J. Xu, for the STAR Collaboration, Energy dependence of moments of net-proton, net-kaon, and net-charge multiplicity distributions at STAR. J. Phys. Conf. Ser. 736, 012002 (2016). doi:10.1088/1742-6596/736/1/012002

  105. J. Thäder (for the STAR Collaboration), Higher moments of net-particle multiplicity distributions. Nucl. Phys. A 956, 320–323 (2016). doi:10.1016/j.nuclphysa.2016.02.047

  106. M.M. Aggarwal et al. (STAR Collaboration), Higher moments of net proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010). doi:10.1103/PhysRevLett.105.022302

  107. X. Luo (for the STAR Collaboration), Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR, PoS(CPOD2014)019 (2015). arXiv: 1503.02558

  108. X. Luo, Exploring the QCD phase structure with beam energy scan in heavy-ion collisions. Nucl. Phys. A 956, 75–82 (2016). doi:10.1016/j.nuclphysa.2016.03.025

    Article  Google Scholar 

  109. K. Morita, V. Skokov, B. Friman et al., Net baryon number probability distribution near the chiral phase transition. Eur. Phys. J. C 74, 2706 (2014). doi:10.1140/epjc/s10052-013-2706-1

    Article  Google Scholar 

  110. P. Braun-Munzinger, B. Friman, F. Karsch et al., Net charge probability distributions in heavy ion collisions at chemical freeze-out. Nucl. Phys. A 880, 48–64 (2012). doi:10.1016/j.nuclphysa.2012.02.010

    Article  Google Scholar 

  111. P. Braun-Munzinger, B. Friman, F. Karsch et al., Net-proton probability distribution in heavy ion collisions. Phys. Rev. C 84, 064911 (2011). doi:10.1103/PhysRevC.84.064911

    Article  Google Scholar 

  112. J. Xu (for the STAR Collaboration), Higher moments of net-kaon multiplicity distributions at STAR, SQM2016 proceedings. J. Phys. Conf. Ser. 779(1), 012073 (2017). doi:10.1088/1742-6596/779/1/012073

  113. A. Adare et al. (PHENIX Collaboration), Measurement of higher cumulants of net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_NN}=7.7\)-200 GeV. Phys. Rev. C 93, 011901(R) (2016). doi:10.1103/PhysRevC.93.011901

  114. J. Xu, S.L. Yu, F. Lui et al., Cumulants of net-proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at \(\sqrt{s_{\text{NN}}}=7.7\), 11.5, 19.6, 27, 39, 62.4, and 200 GeV within the UrQMD model. Phys. Rev. C 94, 024901 (2016). doi:10.1103/PhysRevC.94.024901

    Article  Google Scholar 

  115. S. Borsanyi, Z. Fodor, S.D. Katz et al., Freeze-out parameters: lattice meets experiment. Phys. Rev. Lett. 111, 062005 (2013). doi:10.1103/PhysRevLett.111.062005

    Article  Google Scholar 

  116. J. Noronha-Hostler, R. Bellwied, J. Gunther, et al., Kaon fluctuations from lattice QCD. arXiv: 1607.02527

  117. P. Alba, W. Albericoa, R. Bellwied et al., Freeze-out conditions from net-proton and net-charge fluctuations at RHIC. Phys. Lett. B 738, 305–310 (2014). doi:10.1016/j.physletb.2014.09.052

    Article  Google Scholar 

  118. STAR Note 0619: iTPC proposal. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619

  119. L. Adamczyk et al., STAR Collaboration, Physics program for the STAR/CBM eTOF upgrade. arXiv:1609.05102

  120. T. Ablyazimov, A. Abuhoza, R.P. Adak et al. (CBM Collaboration), Challenges in QCD matter physics—the scientific programme of the compressed baryonic matter experiment at FAIR. Euro. Phys. J. A 53, 60 (2017). doi:10.1140/epja/i2017-12248-y

  121. R. Rapp, Advances in High Energy Physics (Hindawi Publishing Corporation, Cairo, 2013)

    Google Scholar 

  122. Y. Zhang, H. Xu, W. Zha et al., Di-lepton production in heavy-ion collisions and the QCD phase diagram. Cent. Eur. J. Phys. 10(6), 1352–1356 (2012). doi:10.2478/s11534-012-0096-x

    Google Scholar 

  123. R. Rapp, J. Wambach, Advances in Nuclear Physics (Springer, Berlin, 2002)

    Google Scholar 

  124. S. Mukherjee, R. Venugopalan, Y. Yin, Real-time evolution of non-Gaussian cumulants in the QCD critical regime. Phys. Rev. C 92, 034912 (2015). doi:10.1103/PhysRevC.92.034912

    Article  Google Scholar 

  125. L. Jiang, P. Li, H. Song, Multiplicity fluctuations of net protons on the hydrodynamic freeze-out surface. Nucl. Phys. A 956, 360–364 (2016). doi:10.1016/j.nuclphysa.2016.01.034

    Article  Google Scholar 

  126. L. Jiang, P. Li, H. Song, Correlated fluctuations near the QCD critical point. Phys. Rev. C 94, 024918 (2016). doi:10.1103/PhysRevC.94.024918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Luo.

Additional information

The work was supported in part by the MoST of China 973-Project (No. 2015CB856901), and the National Natural Science Foundation of China (No. 11575069).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Xu, N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview. NUCL SCI TECH 28, 112 (2017). https://doi.org/10.1007/s41365-017-0257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0257-0

Keywords

Navigation