Skip to main content
Log in

Measurement of electric quadrupole moment in neutron rich \(^{131,132}\)I

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The quadrupole moments of the excited levels in neutron rich iodine isotopes, viz., \(^{131}\)I (5/2\(_1^+\)) and \(^{132}\)I (3\(_1^+\)), have been measured with LaBr\(_3\)(Ce) detectors using Time Differential Perturbed Angular Correlation (TDPAC) spectroscopy. The excited levels were populated from \(\beta ^-\) decay of the radiochemically separated tellurium (Te) fission products produced in \(^{nat}\)U(\(^4\)He,f) reaction at E\(_{\alpha }\)(lab) = 40 MeV from K-130 cyclotron at VECC, Kolkata. The active tellurium fission products were radiochemically doped in metallic tellurium matrix to provide the necessary Electric Field Gradient (EFG) required for TDPAC measurement. The values of quadrupole moments for the 5/2\(_1^+\) level of \(^{131}\)I and 3\(_1^+\) level of \(^{132}\)I were determined to be \((-)\)0.30(1) eb and (−)0.25(2) eb, respectively. The present measurement provides the first experimental determination on the electric quadrupole moment of 5/2\(_1^+\) level of \(^{131}\)I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. E. Dafni et al., Phys. Rev. Lett 55, 1269 (1985)

    Article  ADS  Google Scholar 

  2. B. Hinfurtner et al., Phys. Rev. Lett 67, 812 (1991)

    Article  ADS  Google Scholar 

  3. J.M. Allmond et al., Phys. Rev. C 84, 061303(R) (2011)

    Article  ADS  Google Scholar 

  4. F. Le Blanc et al., Phys. Rev. C 72, 034305 (2005)

    Article  ADS  Google Scholar 

  5. R. Sifi et al., Hyperfine Interact 171, 173 (2006)

    Article  ADS  Google Scholar 

  6. N.J. Stone, Atom. Data and Nucl. Data Tables 111–112, 1 (2016)

    Article  ADS  Google Scholar 

  7. D.W. Hafemeister, G. Depasquali, H. Dewaardd, Phys. Rev. 135, B1089 (1964)

    Article  Google Scholar 

  8. L.S. Kisslinger, R.A. Sorensen, Rev. Mod. Phys. 35, 853 (1963)

    Article  ADS  Google Scholar 

  9. Hisashi Horie, Akito Arima, Phys. Rev. 99, 778 (1955)

    Article  ADS  Google Scholar 

  10. Rosalie Robinette, J .G. Cosgrove, R .L. Collins, Nucl. Instr. Meth 105, 509 (1972)

    Article  Google Scholar 

  11. H. Haas, D.A. Shirley, J. Chem. Phys. 58, 3339 (1973)

    Article  ADS  Google Scholar 

  12. H. Ooms et al., Nucl. Phys. A 321, 180 (1979)

    Article  ADS  Google Scholar 

  13. M. Grodzicki et al., J. Phys. B 20, 5595 (1987)

    Article  ADS  Google Scholar 

  14. H. Fraunfelder, R. M. Steffen, Alpha Beta and Gamma Ray Spectroscopy, K. Siegbahn, Ed. Vol II, Chap. XIX , North Holland, Amsterdam(1965)

  15. https://www-nds.iaea.org/nuclearmoments/

  16. J.P. Adloff, Radiochimica Acta 25, 57 (1978)

    Article  Google Scholar 

  17. T. Butz et al., Nucl. Instr. Meth. Phys. Res. A 284, 417 (1989)

    Article  ADS  Google Scholar 

  18. Yu. Khazov et al., Nucl. Data Sheets 104, 497 (2005)

    Article  ADS  Google Scholar 

  19. Yu. Khazov, I. Mitropolsky, A. Rodionov, Nucl. Data Sheets 107, 2715 (2006)

    Article  ADS  Google Scholar 

  20. S.S. Alam et al., Phys. Rev. C 99, 014306 (2019)

    Article  ADS  Google Scholar 

  21. R. Vianden, Hyperfine Interactions 15/16, 1081 (1983)

  22. G. Langouche et al., Phys. Rev. B 9, 848 (1974)

    Article  ADS  Google Scholar 

  23. P. Pyykkö, Mol. Phys. 116, 1328 (2018)

    Article  ADS  Google Scholar 

  24. M. Tanigaki et al., Phys. Rev. C 80, 034304 (2009)

    Article  ADS  Google Scholar 

  25. T. Butz, Fourier Transformation for pedestrians, 2nd Ed. Springer pp 71 (2015)

  26. S .S. Alam et al., Nucl. Instr. Meth. Phys. Res. A 874, 103 (2017)

    Article  ADS  Google Scholar 

  27. P.N. Tandon, H.G. Devare, Nucl. Phys. A 102, 203 (1967)

    Article  ADS  Google Scholar 

  28. L.M. Beyer, W.H. Kelly, Nucl. Phys. A 104, 274 (1967)

    Article  ADS  Google Scholar 

  29. M. Ionescu-Bujor et al., Phys. Lett. B 650, 141 (2007)

    Article  ADS  Google Scholar 

  30. B.A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014)

    Article  ADS  Google Scholar 

  31. R.L. Auble, J.B. Ball, C.B. Fulmer, Phys. Rev 169, 955 (1968)

    Article  ADS  Google Scholar 

  32. A. Szanto de Toledo, H. Hafner, H.V. Klapdor, Nucl. Phys. A 320, 309 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The K-130 cyclotron operation group at VECC, Kolkata, is gratefully acknowledged for providing high quality \(^4\)He beam. S. S. A acknowledges support from BRNS (Sanction No. 2013/38/02-BRNS/1927 for PRF, BRNS, dated 16 October 2013) towards his PhD fellowship. Mr. R. K. Chatterjee, RCD, VECC is acknowledged for his assistance in target preparation and radiochemical separation. A. S acknowledges the UGC JRF/SRF fellowship (ref. No:17-06/2012(i)EU-V) in support of participation in the present work. Mr. Anish Kar Mahapatra of CMPD, SINP is sincerely acknowledged for carrying out the XRD measurement. D. B thankfully acknowledges Dr. R Acharya, Head, NA & AC Section, RCD, BARC and Dr. P. K. Pujari, AD, RC & I Group, BARC for their kind support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bhattacharjee.

Additional information

Communicated by Wolfram Korten

S. K. Das: Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S.S., Banerjee, D., Bhattacharjee, T. et al. Measurement of electric quadrupole moment in neutron rich \(^{131,132}\)I. Eur. Phys. J. A 56, 269 (2020). https://doi.org/10.1140/epja/s10050-020-00281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00281-y

Navigation