Skip to main content
Log in

Lattice study of form factors for charmonium

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Form factors for \(\eta _c\) and \(\chi _{c0}\) have been simulated based on \(N_f=2\) Twisted Mass Lattice Quantum Chromodynamics (Lattice QCD) gauge configurations. We construct particle interpolation operators by variational method that can significantly improve signal-to-noise ratio of correlation functions. We apply twisted boundary conditions to compute corresponding correlation functions which make us obtain form factors with more small four-momentum transfer. Furthermore, we fit charge radius for \(\eta _c\) and \(\chi _{c0}\), respectively. The results obtained in this simulation could be considered as a ground test to calculate branch ratio decay width of \(\chi _{c0,1,2}\rightarrow {\gamma {J/\psi }}\) on lattice in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since all data in the study have been presented in figures and tables of the manuscript, we could extract the numerical data readily in the paper.]

References

  1. X. Garcia i Tormo, Mod. Phys. Lett. A 28, 1330028 (2013). arXiv:1307.2238 [hep-ph]

  2. J.M. Cornwall, Mod. Phys. Lett. A 28, 1330035 (2013). arXiv:1310.7897 [hep-ph]

    Article  ADS  Google Scholar 

  3. J.J. Dudek, R.G. Edwards, D.G. Richards, Phys. Rev. D 73, 074507 (2006). arXiv:hep-ph/0601137 [hep-ph]

    Article  ADS  Google Scholar 

  4. Y. Chen, D.-C. Du, B.-Z. Guo, N. Li, C. Liu et al., Phys. Rev. D 84, 034503 (2011). arXiv:1104.2655 [hep-lat]

    Article  ADS  Google Scholar 

  5. M. Ablikim et al., Chin. Phys. C 44, 040001 (2020). arXiv:1912.05983 [hep-ex]

    Article  ADS  Google Scholar 

  6. Y. Chen, M. Gong, N. Li, C. Liu, Y.-B. Liu, Z. Liu, J.-P. Ma, Y. Meng, C. Xiong, K.-L. Zhang (CLQCD) (2020). arXiv:2003.09817 [hep-lat]

  7. R. Frezzotti, G. Rossi, JHEP 0410, 070 (2004). arXiv:hep-lat/0407002 [hep-lat]

    Article  ADS  Google Scholar 

  8. A. Shindler, Phys. Rept. 461, 37 (2008). arXiv:0707.4093 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Boucaud et al. (ETM), Phys. Lett. B 650, 304 (2007). arXiv:hep-lat/0701012 [hep-lat]

  10. P. Boucaud et al., ETM. Comput. Phys. Commun. 179, 695 (2008). arXiv:0803.0224 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Blossier et al., European Twisted Mass Collaboration. JHEP 0804, 020 (2008). arXiv:0709.4574 [hep-lat]

    Google Scholar 

  12. B. Blossier et al., ETM Collaboration. JHEP 0907, 043 (2009). arXiv:0904.0954 [hep-lat]

  13. R. Baron et al., JHEP 06, 111 (2010). arXiv:1004.5284 [hep-lat]

    Article  ADS  Google Scholar 

  14. R. Baron et al., ETM. JHEP 08, 097 (2010). arXiv:0911.5061 [hep-lat]

  15. C. Alexandrou et al., European Twisted Mass. Phys. Rev. D 78, 014509 (2008). arXiv:0803.3190 [hep-lat]

  16. C. Alexandrou, R. Baron, J. Carbonell, V. Drach, P. Guichon, K. Jansen, T. Korzec, and O. Pene (ETM), Phys. Rev. D 80, 114503 (2009). arXiv:0910.2419 [hep-lat]

  17. K. Jansen, A. Shindler, C. Urbach, I. Wetzorke (XLF), Phys. Lett. B 586, 432 (2004). arXiv:hep-lat/0312013 [hep-lat]

  18. B. Blossier et al., ETM Collaboration. Phys. Rev. D 82, 114513 (2010). arXiv:1010.3659 [hep-lat]

  19. R. Frezzotti, S. Sint, P. Weisz (ALPHA collaboration), JHEP 0107, 048 (2001). arXiv:hep-lat/0104014 [hep-lat]

  20. N. Li, Y.-J. Wu, Eur. Phys. J. A 53, 56 (2017)

    Article  ADS  Google Scholar 

  21. N. Li, Y.-J. Wu, T.-B. Gao, Eur. Phys. J. A 54, 197 (2018)

    Article  ADS  Google Scholar 

  22. N. Li, Y.-J. Wu, Int. J. Mod. Phys. A 34, 1950194 (2019)

    Article  ADS  Google Scholar 

  23. D. Brommel et al. (QCDSF/UKQCD Collaboration), Eur. Phys. J. C 51, 335 (2007). arXiv:hep-lat/0608021 [hep-lat]

  24. J.J. Dudek, R. Edwards, C.E. Thomas, Phys. Rev. D 79, 094504 (2009). arXiv:0902.2241 [hep-ph]

    Article  ADS  Google Scholar 

  25. C.J. Shultz, J.J. Dudek, R.G. Edwards, Phys. Rev. D 91, 114501 (2015). arXiv:1501.07457 [hep-lat]

    Article  ADS  Google Scholar 

  26. D. Becirevic, F. Sanfilippo, JHEP 01, 028 (2013). arXiv:1206.1445 [hep-lat]

    Article  ADS  Google Scholar 

  27. A.M. Abdel-Rehim, R. Lewis, R. Woloshyn, J.M. Wu, Phys. Rev. D 74, 014507 (2006). arXiv:hep-lat/0601036 [hep-lat]

    Article  ADS  Google Scholar 

  28. M. Kalinowski, M. Wagner, Phys. Rev. D 92, 094508 (2015). arXiv:1509.02396 [hep-lat]

    Article  ADS  Google Scholar 

  29. R. Frezzotti, G.C. Rossi, JHEP 08, 007 (2004). arXiv:hep-lat/0306014 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Twisted Mass Collaboration (ETMC) to allow us to use their gauge field configurations. The authors also would like to thank Li-Chen Zhao for helpful discussions. Our thanks also go to National Supercomputing Center in Tianjin (NSCC). This work is supported in part by the National Science Foundation of China (NSFC) under the Project No. 12075176 and No. 11705072. This work is also supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department under the Grant No. 19JK0391, and Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JM-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

Communicated by William Detmold

Appendix

Appendix

In this appendix, we provide Tables 5, 67, and 8 to show the data correlation matrices for fitted form factors of \(\eta _c\) and \(\chi _{c0}\).

Table 5 The data correlation matrix for fitted form factors of \(\eta _c\) by using Eq. (13) on Ens.\(B_1\)
Table 6 The data correlation matrix for fitted form factors of \(\eta _c\) by using Eq. (13) on Ens.\(C_1\)
Table 7 The data correlation matrix for fitted form factors of \(\chi _{c0}\) by using Eq. (13) on Ens.\(B_1\)
Table 8 The data correlation matrix for fitted form factors of \(\chi _{c0}\) by using Eq. (13) on Ens.\(C_1\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Liu, CC. & Wu, YJ. Lattice study of form factors for charmonium. Eur. Phys. J. A 56, 242 (2020). https://doi.org/10.1140/epja/s10050-020-00253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00253-2

Navigation