Skip to main content
Log in

Extracting jet transport parameter \(\hat{q}\) from a multiphase transport model

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Within a multiphase transport model with a string-melting scenario, the jet transport parameter \(\hat{q}\) is extracted in Au+Au collisions at \(\sqrt{s_{NN} } \)= 200 GeV and Pb+Pb collisions at \(\sqrt{s_{NN} } \)= 2.76 TeV. The jet transport parameter \(\hat{q}\) is a key parameter in jet-quenching phenomena, which depends not only on the temperature of the QCD medium but also on jet energy. We observe that \(\hat{q}\) increases with increasing of the jet energy for both the partonic phase and the hadronic phase. The energy and path length dependences of \(\hat{q}\) in full heavy-ion evolution are consistent with the expectations of jet quenching. The correlation between jet transport parameter \(\hat{q}\) and dijet transverse momentum asymmetry \(A_J\) is investigated. It is interesting to find that dijets with larger \(A_J\) have larger length-averaged \(\hat{q}\) values. Our study suggests that dijets with different \(A_J\) values can provide versatile tools for studying jet quenching and extracting jet transport parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  2. E.V. Shuryak, Phys. Rep. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. X. Luo, N. Xu, Nucl. Sci. Tech. 28(8), 112 (2017). arXiv:1701.02105 [nucl-ex]

    Article  Google Scholar 

  4. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997). arXiv:hep-ph/9608322

    Article  ADS  Google Scholar 

  5. J.P. Blaizot, L.D. McLerran, Phys. Rev. D 34, 2739 (1986)

    Article  ADS  Google Scholar 

  6. X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)

    Article  ADS  Google Scholar 

  7. M. Gyulassy, M. Plumer, Phys. Lett. B 243, 432 (1990)

    Article  ADS  Google Scholar 

  8. R. Baier, Y.L. Dokshitzer, S. Peigne, D. Schiff, Phys. Lett. B 345, 277 (1995). arXiv:hep-ph/9411409

    Article  ADS  Google Scholar 

  9. G.Y. Qin, X.N. Wang, Int. J. Mod. Phys. E 24(11), 1530014 (2015). arXiv:1511.00790 [hep-ph]

    Article  ADS  Google Scholar 

  10. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 082302 (2003) arXiv:nucl-ex/0210033

  11. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003) arXiv:nucl-ex/0305015

  12. S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 072301 (2003) arXiv:nucl-ex/0304022

  13. A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 80, 024908 (2009) arXiv:0903.3399 [nucl-ex]

  14. B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 82, 034909 (2010) arXiv:0912.1871 [nucl-ex]

  15. S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 72, 1945 (2012) arXiv:1202.2554 [nucl-ex]

  16. K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 108, 092301 (2012) arXiv:1110.0121 [nucl-ex]

  17. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 719, 220 (2013) arXiv:1208.1967 [hep-ex]

  18. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 718, 773 (2013) arXiv:1205.0206 [nucl-ex]

  19. G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 105, 252303 (2010) arXiv:1011.6182 [hep-ex]

  20. S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906 (2011) arXiv:1102.1957 [nucl-ex]

  21. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 594, 371 (2001). arXiv:nucl-th/0006010

    Article  ADS  Google Scholar 

  22. A. Buzzatti, M. Gyulassy, Phys. Rev. Lett. 108, 022301 (2012). arXiv:1106.3061 [hep-ph]

    Article  ADS  Google Scholar 

  23. Xf Guo, X.N. Wang, Phys. Rev. Lett. 85, 3591 (2000). arXiv:hep-ph/0005044

    Article  ADS  Google Scholar 

  24. X.F. Chen, T. Hirano, E. Wang, X.N. Wang, H. Zhang, Phys. Rev. C 84, 034902 (2011). arXiv:1102.5614 [nucl-th]

    Article  ADS  Google Scholar 

  25. A. Majumder, Phys. Rev. D 85, 014023 (2012). arXiv:0912.2987 [nucl-th]

    Article  ADS  Google Scholar 

  26. I. Vitev, B.W. Zhang, Phys. Rev. Lett. 104, 132001 (2010). arXiv:0910.1090 [hep-ph]

    Article  ADS  Google Scholar 

  27. B. Schenke, C. Gale, S. Jeon, Phys. Rev. C 80, 054913 (2009). arXiv:0909.2037 [hep-ph]

    Article  ADS  Google Scholar 

  28. G.Y. Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore, M.G. Mustafa, Phys. Rev. Lett. 100, 072301 (2008). arXiv:0710.0605 [hep-ph]

    Article  ADS  Google Scholar 

  29. O. Fochler, Z. Xu, C. Greiner, Phys. Rev. C 82, 024907 (2010). arXiv:1003.4380 [hep-ph]

    Article  ADS  Google Scholar 

  30. Y. He, T. Luo, X. N. Wang and Y. Zhu, Phys. Rev. C 91, 054908 (2015) Erratum: [Phys. Rev. C 97, no. 1, 019902 (2018)] arXiv:1503.03313 [nucl-th]

  31. J. Casalderrey-Solana, X.N. Wang, Phys. Rev. C 77, 024902 (2008). arXiv:0705.1352 [hep-ph]

    Article  ADS  Google Scholar 

  32. A. Majumder, B. Muller, X.N. Wang, Phys. Rev. Lett. 99, 192301 (2007). arXiv:hep-ph/0703082

    Article  ADS  Google Scholar 

  33. H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178

    Article  ADS  Google Scholar 

  34. J. Xu, Nucl. Sci. Tech. 24(5), 50514 (2013). arXiv:1302.0165 [nucl-th]

    Google Scholar 

  35. A. Ayala, I. Dominguez, J. Jalilian-Marian, M.E. Tejeda-Yeomans, Phys. Rev. C 94(2), 024913 (2016). arXiv:1603.09296 [hep-ph]

    Article  ADS  Google Scholar 

  36. K. M. Burke et al. [JET Collaboration], Phys. Rev. C 90, no. 1, 014909 (2014) arXiv:1312.5003 [nucl-th]

  37. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005). arXiv:nucl-th/0411110

    Article  ADS  Google Scholar 

  38. B. Zhang, L.W. Chen, C.M. Ko, Phys. Rev. C 72, 024906 (2005). arXiv:nucl-th/0502056

    Article  ADS  Google Scholar 

  39. G.L. Ma, B. Zhang, Phys. Lett. B 700, 39 (2011). arXiv:1101.1701 [nucl-th]

    Article  ADS  Google Scholar 

  40. G.L. Ma, X.N. Wang, Phys. Rev. Lett. 106, 162301 (2011). arXiv:1011.5249 [nucl-th]

    Article  ADS  Google Scholar 

  41. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  42. M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994). arXiv:nucl-th/9502021

    Article  ADS  Google Scholar 

  43. B. Zhang, Comput. Phys. Commun. 109, 193 (1998). arXiv:nucl-th/9709009

    Article  ADS  Google Scholar 

  44. Z.W. Lin, C.M. Ko, Phys. Rev. C 65, 034904 (2002). arXiv:nucl-th/0108039

    Article  ADS  Google Scholar 

  45. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995). arXiv:nucl-th/9505016

    Article  ADS  Google Scholar 

  46. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994). https://doi.org/10.1016/0010-4655(94)90132-5

    Article  ADS  Google Scholar 

  47. M.W. Nie, G.L. Ma, Nucl. Tech. 37, 100519 (2014)

    Google Scholar 

  48. G.L. Ma, Phys. Lett. B 724, 278 (2013). arXiv:1302.5873 [nucl-th]

    Article  ADS  Google Scholar 

  49. G.L. Ma, Phys. Rev. C 87(6), 064901 (2013). arXiv:1304.2841 [nucl-th]

    Article  ADS  Google Scholar 

  50. G.L. Ma, Phys. Rev. C 88(2), 021902 (2013). arXiv:1306.1306 [nucl-th]

    Article  ADS  Google Scholar 

  51. G.L. Ma, Phys. Rev. C 89(6), 064909 (2014). arXiv:1310.3701 [nucl-th]

    Article  ADS  Google Scholar 

  52. G.L. Ma, Phys. Rev. C 89(2), 024902 (2014). arXiv:1309.5555 [nucl-th]

    Article  ADS  Google Scholar 

  53. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]

    Article  ADS  Google Scholar 

  54. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). arXiv:hep-ph/0512210

    Article  ADS  Google Scholar 

  55. M.J. Tannenbaum, Phys. Lett. B 771, 553 (2017). arXiv:1702.00840 [nucl-ex]

    Article  ADS  Google Scholar 

  56. L. Chen, G.Y. Qin, S.Y. Wei, B.W. Xiao, H.Z. Zhang, Phys. Lett. B 773, 672 (2017). arXiv:1607.01932 [hep-ph]

    Article  ADS  Google Scholar 

  57. A.H. Mueller, B. Wu, B.W. Xiao, F. Yuan, Phys. Lett. B 763, 208 (2016). arXiv:1604.04250 [hep-ph]

    Article  ADS  Google Scholar 

  58. Z.W. Lin, Phys. Rev. C 90(1), 014904 (2014). arXiv:1403.6321 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.-C.Z. is grateful to the Shanghai Institute of Applied Physics for its hospitality. F.-C.Z. is supported by the National Natural Science Foundation of China under Grant No. 11447203, the Science and Technology Department of Guizhou Province Fund under Grant No. 20147053, and the Doctoral Research Fund of Guizhou Normal University. G.-L.M. and Y.-G.M. are supported by the National Natural Science Foundation of China under Grants Nos. 11890710, 11835002,11961131011, 11421505, 11522547, and 11375251, the Key Research Program of the Chinese Academy of Sciences under Grant No. XDPB09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Ma.

Additional information

Communicated by Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, FC., Ma, GL. & Ma, YG. Extracting jet transport parameter \(\hat{q}\) from a multiphase transport model. Eur. Phys. J. A 56, 70 (2020). https://doi.org/10.1140/epja/s10050-020-00043-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00043-w

Navigation