Skip to main content
Log in

Total reaction cross section for the 11B + 58Ni system and application of a recent new reduction methodology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The investigation is made to extract the total reaction cross section from a previous work where the elastic scattering of the tightly bound 11B on the 58Ni target was measured, at energies close to the Coulomb barrier. Total reaction cross sections were extracted from the elastic scattering analysis using the Optical Model with double-folding type potentials. We have also taken the total reaction cross section of the systems with almost the same mass range targets and different projectiles from the literature and tried to compare with our system by reducing the cross sections, for the elimination of trivial effects due to different sizes and different Coulomb barriers. In addition to that, for all the systems considered, one-channel calculations that account only for fusion have been performed to study the quantitative effect of the direct reaction channels on the total reaction cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

  2. J.F. Liang, C. Signorini, Int. J. Mod. Phys. E 14, 1121 (2005)

    Article  ADS  Google Scholar 

  3. L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Prog. Part Nucl. Phys. 59, 579 (2007)

    Article  ADS  Google Scholar 

  5. N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part Nucl. Phys. 63, 396 (2009)

    Article  ADS  Google Scholar 

  6. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  7. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  8. V. Guimarães et al., Phys. Rev. C 75, 054602 (2007)

    Article  ADS  Google Scholar 

  9. R. Kanungo et al., Phys. Lett. B 660, 26 (2008)

    Article  ADS  Google Scholar 

  10. H.B. Jeppesen et al., Phys. Lett. B 642, 449 (2006)

    Article  ADS  Google Scholar 

  11. N.N. Deshmukh et al., Phys. Rev. C 92, 054615 (2015)

    Article  ADS  Google Scholar 

  12. L.C. Chamon, D. Pereira, M.S. Hussein, M.A. Candido Ribeiro, D. Galetti, Phys. Rev. Lett. 79, 5218 (1997)

    Article  ADS  Google Scholar 

  13. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  14. P.R.S. Gomes, D.R. Mendes Junior, L.F. Canto, J. Lubian, P.N. de Faria, Few-Body Syst. 57, 205 (2016)

    Article  ADS  Google Scholar 

  15. L.F. Canto, D.R. Mendes Junior, P.R.S. Gomes, J. Lubian, Phys. Rev. C 92, 014626 (2015)

    Article  ADS  Google Scholar 

  16. V. Morcelle et al., Phys. Rev. C 95, 014615 (2017)

    Article  ADS  Google Scholar 

  17. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  18. Shradha Dubey et al., Phys. Rev. C 89, 014610 (2014)

    Article  ADS  Google Scholar 

  19. N.N. Deshmukh et al., Phys. Rev. C 83, 024607 (2011)

    Article  ADS  Google Scholar 

  20. N.N. Deshmukh et al., AIP Conf. Proc. 1423, 122 (2012)

    Article  ADS  Google Scholar 

  21. S. Mukherjee et al., Eur. Phys. J. A 45, 23 (2010)

    Article  ADS  Google Scholar 

  22. P.R.S. Gomes et al., Phys. Lett. B 634, 356 (2006)

    Article  ADS  Google Scholar 

  23. Bing Wang, Wei-Juan Zhao, P.R.S. Gomes, En-Guang Zhao, Shan-Gui Zhou, Phys. Rev. C 90, 034612 (2014)

    Article  ADS  Google Scholar 

  24. M.S. Hussein, P.R.S. Gomes, J. Lubian, L.C. Chamon, Phys. Rev. C 73, 044610 (2006)

    Article  ADS  Google Scholar 

  25. P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, Phys. Rev. C 71, 017601 (2005)

    Article  ADS  Google Scholar 

  26. L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, Nucl. Phys. A 821, 51 (2009)

    Article  ADS  Google Scholar 

  27. L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, J. Phys. G: Nucl. Part. Phys. 36, 015109 (2009)

    Article  ADS  Google Scholar 

  28. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  29. J.M.B. Shorto et al., Phys. Lett. B 678, 77 (2009)

    Article  ADS  Google Scholar 

  30. A. Pakou et al., Eur. Phys. J. A 51, 55 (2015)

    Article  ADS  Google Scholar 

  31. N.N. Deshmukh, in Proceedings of the International Symposium on Nuclear Physics, Vol. 54 (DAE, 2009) p. 434

  32. N.N. Deshmukh et al., Eur. Phys. J. A 47, 118 (2011)

    Article  ADS  Google Scholar 

  33. P.N. de Faria et al., Phys. Rev. C 81, 044605 (2010)

    Article  ADS  Google Scholar 

  34. V. Morcelle et al., Phys. Rev. C 89, 044611 (2014)

    Article  ADS  Google Scholar 

  35. M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)

    Article  ADS  Google Scholar 

  36. C. Signorini et al., Eur. Phys. J. A 44, 63 (2010)

    Article  ADS  Google Scholar 

  37. E. Benjamim et al., Phys. Lett. B 647, 30 (2007)

    Article  ADS  Google Scholar 

  38. A. Barioni et al., Phys. Rev. C 80, 034617 (2009)

    Article  ADS  Google Scholar 

  39. K.C.C. Pires, R. Lichtenthäler, A. Lépine-Szily, V. Morcelle, Phys. Rev. C 90, 027605 (2014)

    Article  ADS  Google Scholar 

  40. J.J. Kolata, E.F. Aguilera, Phys. Rev. C 79, 027603 (2009)

    Article  ADS  Google Scholar 

  41. E.F. Aguilera et al., Phys. Rev. C 79, 021601 (2009)

    Article  ADS  Google Scholar 

  42. E.F. Aguilera, I. Martel, A.M. Sánchez-Benéz, L. Acosta, Phys. Rev. C 83, 021601 (2011)

    Article  ADS  Google Scholar 

  43. J.C. Zamora et al., Phys. Rev. C 84, 034611 (2011)

    Article  ADS  Google Scholar 

  44. J. Lei, J.S. Wang, S. Mukherjee, Q. Wang, R. Wada, Phys. Rev. C 86, 057603 (2012)

    Article  ADS  Google Scholar 

  45. X.P. Yang, G.L. Zhang, H.Q. Zhang, Phys. Rev. C 87, 014603 (2013)

    Article  ADS  Google Scholar 

  46. M. Dasgupta et al., Phys. Rev. C 70, 024606 (2004)

    Article  ADS  Google Scholar 

  47. C.S. Palshetkar et al., Phys. Rev. C 89, 024607 (2014)

    Article  ADS  Google Scholar 

  48. V.V. Parkar et al., Phys. Rev. C 97, 014607 (2018)

    Article  ADS  Google Scholar 

  49. R. Lichtenthäler et al., AIP Conf. Proc. 1139, 76 (2009)

    Article  ADS  Google Scholar 

  50. V. Morcelle et al., Phys. Lett. B 732, 228 (2014)

    Article  ADS  Google Scholar 

  51. A. Di Pietro et al., Europhys. Lett. 64, 309 (2003)

    Article  ADS  Google Scholar 

  52. A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004)

    Article  ADS  Google Scholar 

  53. F.A. Souza et al., Nucl. Phys. A 821, 36 (2009)

    Article  ADS  Google Scholar 

  54. M. Biswas et al., Nucl. Phys. A 802, 67 (2008)

    Article  ADS  Google Scholar 

  55. K.O. Pfeiffer, E. Speth, K. Bethge, Nucl. Phys. A 206, 545 (1973)

    Article  ADS  Google Scholar 

  56. M. Zadro et al., Phys. Rev. C 80, 064610 (2009)

    Article  ADS  Google Scholar 

  57. C. Beck, N. Keeley, A. Diaz-Torres, Phys. Rev. C 75, 054605 (2007)

    Article  ADS  Google Scholar 

  58. A. Lépine-Szily, R. Lichtenthäler, Nucl. Phys. A 787, 94c (2007)

    Article  ADS  Google Scholar 

  59. F.D. Becchetti et al., Phys. Rev. C 48, 308 (1993)

    Article  ADS  Google Scholar 

  60. M. Aygun, Acta Phys. Pol. B 45, 1875 (2014)

    Article  ADS  Google Scholar 

  61. M. Mazzocco et al., Phys. Rev. C 92, 024615 (2015)

    Article  ADS  Google Scholar 

  62. J.C. Morales-Rivera et al., EPJ Web of Conferences 117, 07027 (2016)

    Article  Google Scholar 

  63. P.R.S. Gomes et al., Phys. Rev. C 71, 034608 (2005)

    Article  ADS  Google Scholar 

  64. N.B.J. Tannous, J.F. Mateja, D.C. Wilson, L.R. Medsker, R.H. Davis, Phys. Rev. C 18, 2190 (1978)

    Article  ADS  Google Scholar 

  65. N. Keeley et al., Nucl. Phys. A 582, 314 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Deshmukh.

Additional information

Communicated by P. Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, N., Lubian, J. Total reaction cross section for the 11B + 58Ni system and application of a recent new reduction methodology. Eur. Phys. J. A 54, 101 (2018). https://doi.org/10.1140/epja/i2018-12538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12538-x

Navigation