Skip to main content
Log in

Embedded class solutions compatible for physical compact stars in general relativity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have explored a family of new solutions satisfying Einstein’s field equations and Karmarkar condition. We have assumed an anisotropic stress-tensor with no net electric charge. Interestingly, the new solutions yield zero values of all the physical quantities for all even integer \(n > 0\). However, for all \(n >0\) (\(n \neq \) even numbers) they yield physically possible solutions. We have tuned the solution for neutron star Vela X-1 so that the solutions matches the observed mass and radius. For the same star we have extensively discussed the behavior of the solutions. The solutions yield a stiffer equation of state for larger values of n since the adiabatic index increases and speed of sound approaches the speed of light. It is also found that the solution is physically possible for Vela X-1 if \(1.8 \leq n < 7\) (with \(n\neq 2,4,6\)). All the solutions for \(n \geq 7\) violates the causality condition and all the solutions with \(0 < n < 1.8\) lead to complex values of transverse sound speed \( v_{t}\). The range of well-behaved n depends on the mass and radius of compact stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarzschild, Sitz. Deutsch Akad. Wiss. Math. Phys. Berlin 24, 424 (1916)

    Google Scholar 

  2. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  3. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  4. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  5. N. Glendenning, Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer-Verlag, New York, 1996)

  6. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (Institute of Physics, Bristol, 1999)

  7. F. Weber, R. Negreiros, P. Rosenfield, Neutron star interiors and the equation of state of superdense matter, in Neutron Stars and Pulsars (Springer, Berlin, 2009)

  8. R.P. Negreiros, V.A. Dexheimer, S. Schramm, Phys. Rev. C 82, 035803 (2010)

    Article  ADS  Google Scholar 

  9. D. Page, U. Geppert, F. Weber, Nucl. Phys. A 777, 497 (2006)

    Article  ADS  Google Scholar 

  10. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. Suppl. Ser. 155, 623 (2004)

    Article  ADS  Google Scholar 

  11. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  12. A.I. Sokolov, J. Exp. Theor. Phys. 79, 1137 (1980)

    Google Scholar 

  13. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.B. Hartle, R.F. Sawyer, D.J. Scalapino, Astrophys. J. 199, 471 (1975)

    Article  ADS  Google Scholar 

  15. A.B. Migdal, Nucl. Phys. 13, 655 (1959)

    Article  Google Scholar 

  16. S.D. Maharaj, S.D.K. Komathiraj, Class. Quantum Grav. 24, 4513 (2007)

    Article  Google Scholar 

  17. F. Rahaman, P. Bhar, R. Biswas, A.A. Usmani, Eur. Phys. J. C 74, 2845 (2014)

    Article  ADS  Google Scholar 

  18. K. Deb, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  Google Scholar 

  19. F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)

    Article  ADS  Google Scholar 

  20. P. Bhar, Astrophys. Space Sci. 359, 41 (2015)

    Article  ADS  Google Scholar 

  21. P. Bhar, M.H. Murad, Astrophys. Space Sci. 361, 334 (2016)

    Article  ADS  Google Scholar 

  22. P. Bhar, K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 343 (2016)

    Article  ADS  Google Scholar 

  23. Y.K. Gupta, J.R. Sharma, Gen. Relativ. Gravit. 28, 1447 (1996)

    Article  ADS  Google Scholar 

  24. C. Kumar, Y.K. Gupta, Int. J. Mod. Phys. A 25, 3993 (2010)

    Article  ADS  Google Scholar 

  25. C. Kumar, Y.K. Gupta, Int. J. Theor. Phys. 53, 2041 (2014)

    Article  Google Scholar 

  26. K.N. Singh, N. Pant, N. Pradhan, Astrophys. Space Sci. 361, 173 (2016)

    Article  ADS  Google Scholar 

  27. K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016)

    Article  ADS  Google Scholar 

  28. K.N. Singh, P. Bhar, N. Pant, Int. J. Mod. Phys. D 25, 1650099 (2016)

    Article  ADS  Google Scholar 

  29. K.N. Singh, M.H. Murad, N. Pant, Eur. Phys. J. A 53, 21 (2017)

    Article  ADS  Google Scholar 

  30. P. Bhar, K.N. Singh, T. Manna, Int. J. Mod. Phys. D 26, 1750090 (2017)

    Article  ADS  Google Scholar 

  31. P. Fuloria, N. Pant, Eur. Phys. J. A 53, 227 (2017)

    Article  ADS  Google Scholar 

  32. P. Bhar, K.N. Singh, F. Rahaman, N. Pant, S. Banerjee, Int. J. Mod. Phys. D 26, 1750078 (2017)

    Article  ADS  Google Scholar 

  33. N.F. Naidu, M. Govender, S.D. Maharaj, Eur. Phys. J. C 78, 48 (2018)

    Article  ADS  Google Scholar 

  34. K.N. Singh, P. Bhar, F. Rahaman, N. Pant, M. Rahaman, Mod. Phys. Lett. A 32, 1750093 (2017)

    Article  ADS  Google Scholar 

  35. K.N. Singh, N. Pant., O. Troconis, Ann. Phys. 377, 256 (2017)

    Article  ADS  Google Scholar 

  36. S. Chakraborty, N.K. Dadhich, arXiv:gr-qc/1605.01961 (2016)

  37. L. Schlai, Ann. Mat. 5, 170 (1871)

    Google Scholar 

  38. J. Nash, Ann. Math. 63, 20 (1956)

    Article  MathSciNet  Google Scholar 

  39. K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    Google Scholar 

  40. S.N.S.P. Pandey, Sharma, Gen. Relativ. Gravit. 14, 113 (1981)

    Article  ADS  Google Scholar 

  41. M. Kohler, K.L. Chao, Z. Naturforsch. 20, 1537 (1965)

    Article  ADS  Google Scholar 

  42. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Grav. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  43. H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)

    Article  ADS  Google Scholar 

  44. L. Herrera, G. Ruggeri, L. Witten, Astrophys. J. 234, 1094 (1979)

    Article  ADS  Google Scholar 

  45. B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravitational Theory and Gravitational Collapse (University of Chicago Press, Chicago, 1965)

  46. Ya.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics Vol. 1: Stars and Relativity (University of Chicago Press, Chicago, 1971)

  47. T. Gangopadhyay, S. Ray, X.D. Li, J. Dey, M. Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    Article  ADS  Google Scholar 

  48. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksh. Newton Singh.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newton Singh, K., Pant, N., Tewari, N. et al. Embedded class solutions compatible for physical compact stars in general relativity. Eur. Phys. J. A 54, 77 (2018). https://doi.org/10.1140/epja/i2018-12510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12510-x

Navigation