Skip to main content
Log in

Modelling of anisotropic compact stars of embedding class one

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function \(\nu\), we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  2. R. Kippenhahm, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)

  3. M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Sharma, S. Mukherjee, S.D. Maharaj, Gen. Relativ. Gravit. 33, 999 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.P. de León, Gen. Relativ. Gravit. 25, 1123 (1993)

    Article  ADS  Google Scholar 

  6. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.K. Chattopadhyay, R. Deb, B.C. Paul, Int. J. Mod. Phys. D 21, 1250071 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.S. Misthry, S.D. Maharaj, P.G.L. Leach, Math. Methods Appl. Sci. 31, 363 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. SK. Monowar Hossein et al., Int. J. Mod. Phys. D 21, 1250088 (2012)

    Article  Google Scholar 

  11. P. Bhar, M.H. Murad, N. Pant, Astrophys. Space Sci. 359, 13 (2015)

    Article  ADS  Google Scholar 

  12. P. Bhar, Astrophys. Space Sci. 359, 41 (2015)

    Article  ADS  Google Scholar 

  13. P. Bhar, F. Rahaman, Eur. Phys. J. C 75, 41 (2015)

    Article  ADS  Google Scholar 

  14. C.G. Böhmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  15. P. Mafa Takisa, S. Ray, S.D. Maharaj, Astrophys. Space Sci. 350, 733 (2014)

    Article  ADS  Google Scholar 

  16. P. Mafa Takisa, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 463 (2014)

    Article  ADS  Google Scholar 

  17. Sifiso A. Ngubelanga, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 357, 40 (2015)

    Article  ADS  Google Scholar 

  18. J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 2131 (2014)

    Article  Google Scholar 

  19. M. Malaver, Front. Math. Its Appl. 1, 9 (2014)

    Google Scholar 

  20. M. Malaver, Front. Appl. Phys. 1, 20 (2016)

    Google Scholar 

  21. N. Pant, S.K. Maurya, Appl. Math. Comput. 218, 8260 (2012)

    MathSciNet  Google Scholar 

  22. S.K. Maurya, Y.K. Gupta, Nonlinear Anal. Real World Appl. 13, 677 (2012)

    Article  MathSciNet  Google Scholar 

  23. S.K. Maurya, Y.K. Gupta, S. Ray, S.R. Choudhary, Eur. Phys. J. C 75, 1 (2015)

    Article  ADS  Google Scholar 

  24. S.K. Maurya, Y.K. Gupta, S. Ray, arXiv:1502.01915 [gr-qc] (2015)

  25. A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1924)

  26. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Anchordoqui, S. Pérez Berglia, Phys. Rev. D 62, 067502 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Rayski, Eight-dimensional unified theory, preprint Dublin Institute for Advance Studies (1976)

  29. M. Pavsic, V. Tapia, Resource letter on geometrical results for embeddings and branes, arXiv:gr-qc/0010045 (2001)

  30. A. Treibergs, An isometric embedding problem arising from general relativity, talk given at the International Workshop on Geometry, National Tsing Hua University, Hsinchu, Taiwan, 2000, http://www.math.utah.edu/~treiberg/tai6.pdf

  31. S.K. Maurya, Y.K. Gupta, T.T. Smitha, Farook Rahaman, Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  32. S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  33. S.K. Maurya, Y.K. Gupta, S. Ray, B. Dayanandan, Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  34. S.K. Maurya et al., Int. J. Mod. Phys. D 26, 1750002 (2017)

    Google Scholar 

  35. K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. K.N. Singh et al., Astrophys. Space Sci. 361, 173 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. K.N. Singh et al., Int. J. Mod. Phys. D 25, 1650099 (2016)

    Article  Google Scholar 

  38. K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    MathSciNet  Google Scholar 

  39. S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  40. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  41. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  42. L. Herrera et al., Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)

    Article  ADS  Google Scholar 

  45. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  46. D.E. Barraco, V.H. Hamity, Phys. Rev. D 65, 124028 (2002)

    Article  ADS  Google Scholar 

  47. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  48. H. Abreu, H. Hernández, L.A. Núñez, Class. Quantum Grav. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  49. H. Andréasson, Commun. Math. Phys. 288, 715 (2009)

    Article  ADS  Google Scholar 

  50. H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  51. L. Herrera, G. Ruggeri, L. Witten, Astrophys. J. 234, 1094 (1979)

    Article  ADS  Google Scholar 

  52. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhar, P., Maurya, S.K., Gupta, Y.K. et al. Modelling of anisotropic compact stars of embedding class one. Eur. Phys. J. A 52, 312 (2016). https://doi.org/10.1140/epja/i2016-16312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16312-x

Navigation