Skip to main content
Log in

Speed of sound in hadronic matter using non-extensive Tsallis statistics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The speed of sound (\( c_{s}\)) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first-order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different q-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in the non-extensive case for \( c^{2}_{s}\) by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly show that the temperature where the mass cut-off starts varies with the q-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of q above approximately 1.13 all criticality disappears in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of q, disappears completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chojnacki, W. Florkowski, Acta Phys. Pol. B 38, 3249 (2007)

    ADS  Google Scholar 

  2. J. Steinheimer, M. Bleicher, Eur. Phys. J. A 48, 100 (2012)

    Article  ADS  Google Scholar 

  3. A.N. Tawfik, H. Magdy, Int. J. Mod. Phys. A 29, 1450152 (2014)

    Article  Google Scholar 

  4. B. Mohanty, J.e. Alam, Phys. Rev. C 68, 064903 (2003)

    Article  ADS  Google Scholar 

  5. L.N. Epele, H. Fanchiotti, C.A. Garcia Canal, E. Roulet, Phys. Rev. D 36, 1508 (1987)

    Article  ADS  Google Scholar 

  6. M. Plumer, S. Raha, R.M. Weiner, Phys. Lett. B 139, 198 (1984)

    Article  ADS  Google Scholar 

  7. R.V. Gavai, S. Gupta, S. Mukherjee, Phys. Rev. D 71, 074013 (2005)

    Article  ADS  Google Scholar 

  8. P. Castorina, J. Cleymans, D.E. Miller, H. Satz, Eur. Phys. J. C 66, 207 (2010)

    Article  ADS  Google Scholar 

  9. A. Deppman, J. Phys. G 41, 055108 (2014)

    Article  ADS  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon Press, Oxford, 1987) Chapt. 8, p. 251

  11. C. Beck, Physica A 286, 164 (2000)

    Article  ADS  Google Scholar 

  12. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  13. A. Deppman, Physica A 391, 6380 (2012)

    Article  ADS  Google Scholar 

  14. I. Sena, A. Deppman, Eur. Phys. J. A 49, 17 (2013)

    Article  ADS  Google Scholar 

  15. M.D. Azmi, J. Cleymans, J. Phys. G 41, 065001 (2014)

    Article  ADS  Google Scholar 

  16. C.Y. Wong, G. Wilk, Phys. Rev. D 87, 114007 (2013)

    Article  ADS  Google Scholar 

  17. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013)

    Article  ADS  Google Scholar 

  18. C.Y. Wong, G. Wilk, Acta Phys. Pol. B 43, 2047 (2012)

    Article  Google Scholar 

  19. J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)

    Article  ADS  Google Scholar 

  20. I. Bediaga, E.M.F. Curado, J.M. de Miranda, Physica A 286, 156 (2000)

    Article  ADS  Google Scholar 

  21. K. Urmossy, G.G. Barnafoldi, T.S. Biro, Phys. Lett. B 701, 111 (2011)

    Article  ADS  Google Scholar 

  22. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901 (2009)

    Article  ADS  Google Scholar 

  24. T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo, Eur. Phys. J. A 52, 30 (2016)

    Article  ADS  Google Scholar 

  25. B. De, S. Bhattacharyya, G. Sau, S.K. Biswas, Int. J. Mod. Phys. E 16, 1687 (2007)

    Article  ADS  Google Scholar 

  26. B. De, Eur. Phys. J. A 50, 138 (2014)

    Article  ADS  Google Scholar 

  27. B. De, Eur. Phys. J. A 50, 70 (2014)

    Article  ADS  Google Scholar 

  28. S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R. Sahoo, J. Cleymans, Eur. Phys. J. A 52, 289 (2016)

    Article  ADS  Google Scholar 

  29. D.K. Mishra, P. Garg, P.K. Netrakanti, A.K. Mohanty, J. Phys. G 42, 105105 (2015)

    Article  ADS  Google Scholar 

  30. J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010)

    Article  ADS  Google Scholar 

  31. F. Buyukkilic, D. Demirhan, Phys. Lett. A 181, 24 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Pennini, A. Plastino, A.R. Plastino, Phys. Lett. A 208, 309 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2004)

    Article  ADS  Google Scholar 

  34. J.M. Conroy, H. Miller, Phys. Rev. D 78, 054010 (2008)

    Article  ADS  Google Scholar 

  35. J. Chen et al., Phys. Lett. A 300, 65 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. M.D. Azmi, J. Cleymans, Eur. Phys. J. C 75, 430 (2015)

    Article  ADS  Google Scholar 

  37. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001)

    Article  ADS  Google Scholar 

  38. R. Hagedorn, Suppl. Nuovo Cimento 3, 147 (1965)

    Google Scholar 

  39. R. Hagedorn, Nuovo Cimento 35, 395 (1965)

    Article  Google Scholar 

  40. R. Hagedorn, Nuovo Cimento A 56, 1027 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuntia, A., Sahoo, P., Garg, P. et al. Speed of sound in hadronic matter using non-extensive Tsallis statistics. Eur. Phys. J. A 52, 292 (2016). https://doi.org/10.1140/epja/i2016-16292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16292-9

Navigation