Skip to main content
Log in

Multi-source thermal model describing multi-region structure of transverse momentum spectra of identified particles and parameter dynamics of system evolution in relativistic collisions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, the multi-region structure of transverse momentum (\(p_{\text {T}}\)) spectra of identified particles produced in relativistic collisions is studied by the multi-component standard distribution (the Boltzmann, Fermi–Dirac, or Bose–Einstein distribution) in the framework of a multi-source thermal model. Results are interpreted in the framework of string model phenomenology in which the multi-region of \(p_{\text {T}}\) spectra corresponds to the string hadronization in the cascade process of string breaking. The contributions of the string hadronizations from the first-, second-, and third-, i.e., last-generations of string breakings mainly form high-, intermediate-, and low-\(p_{\text {T}}\) regions, respectively. From the high- to low-\(p_{\text {T}}\) regions, the extracted volume parameter increases rapidly, and temperature and flow velocity parameters decrease gradually. The multi-region of \(p_{\text {T}}\) spectra reflects the volume, temperature, and flow velocity dynamics of the system evolution. Due to the successful application of the multi-component standard distribution, this work reflects that the simple classical theory can still play a great role in the field of complex relativistic collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.

References

  1. A N Tawfik, M Hanafy and W Scheinast Indian J. Phys. 96 2993 (2022)

    Article  ADS  Google Scholar 

  2. Y Su, X L Chen, Y J Sun and Y F Zhang Nucl Sci. Tech. 32 108 (2021)

    Article  Google Scholar 

  3. I Khan, M Iqbal, A Zaman and N Ullah Indian J. Phys. 96 1259 (2022)

    Article  ADS  Google Scholar 

  4. M Ghimiray, N Subba, A Ahmed, A N Tawfik and P K Haldar Indian J. Phys. 97 1551 (2023)

    Article  ADS  Google Scholar 

  5. E Schnedermann, J Sollfrank and U Heinz Phys. Rev. C 48 2462 (1993)

    Article  ADS  Google Scholar 

  6. B I Abelev, M M Aggarwal, Z Ahammed et al [STAR Collaboration] Phys. Rev. C 79 034909 (2009)

  7. B I Abelev, M M Aggarwal, Z Ahammed et al [STAR Collaboration] Phys. Rev. C 81 024911 (2010)

  8. Z B Tang, Y C Xu, L J Ruan, G van Buren, F Q Wang and Z B Xu Phys. Rev. C 79 051901(R) (2009)

    Article  ADS  Google Scholar 

  9. J Cleymans and D Worku Eur. Phys. J. A 48 160 (2012)

    Article  ADS  Google Scholar 

  10. P K Khandai, P Sett, P Shukla and V Singh J. Phys. G 41 025105 (2014)

    Article  ADS  Google Scholar 

  11. K K Olimov, S Z Kanokova, K Olimov et al Mod. Phys. Lett. A 35 2050115 (2020)

    Article  ADS  Google Scholar 

  12. K K Olimov, S Z Kanokova, A K Olimov et al Mod. Phys. Lett. A 35 2050237 (2020)

    Article  ADS  Google Scholar 

  13. K K Olimov, A Iqbal and S Masood Int. J. Mod. Phys. A 35 2050167 (2020)

    Article  ADS  Google Scholar 

  14. H Heiselberg and A-M Levy Phys. Rev. C 59 2716 (1999)

    Article  ADS  Google Scholar 

  15. U W Heinz 2003 CERN–CLAF School of High-Energy Physics (San Miguel Regla, Mexico, 2003) (ed) N Ellis (Switzerland: CERN Yellow Report) p 165 (2006). arXiv:hep-ph/0407360 (2004)

  16. S Takeuchi, K Murase, T Hirano, P Huovinen and Y Nara Phys. Rev. C 92 044907 (2015)

    Article  ADS  Google Scholar 

  17. R Russo PhD thesis (Universita degli Studi di Torino, Italy) (2015). arXiv:1511.04380 [nucl-ex] (2015)

  18. H-L Lao, H-R Wei, F-H Liu and R A Lacey Eur. Phys. J. A 52 203 (2016)

    Article  ADS  Google Scholar 

  19. A Khatun, D Thakur, S Deb and R Sahoo J. Phys. G 47 055110 (2020)

    Article  ADS  Google Scholar 

  20. D Sahu, S Tripathy, G S Pradhan and R Sahoo Phys. Rev. C 101 014902 (2020)

    Article  ADS  Google Scholar 

  21. M Suleymanov Int. J. Mod. Phys. E 27 1850008 (2018)

    Article  ADS  Google Scholar 

  22. M Suleymanov Int. J. Mod. Phys. E 28 1950084 (2019)

    Article  ADS  Google Scholar 

  23. M Suleymanov, Phys. Part. Nuclei 54, 693 (2023)

    Article  ADS  Google Scholar 

  24. F-H Liu Nucl. Phys. A 810 159 (2008)

    Article  ADS  Google Scholar 

  25. F-H Liu and J-S Li Phys. Rev. C 78 044602 (2008)

    Article  ADS  Google Scholar 

  26. F-H Liu Phys. Rev. C 78 014902 (2008)

    Article  ADS  Google Scholar 

  27. F-H Liu, B K Singh and N N Abd Allah Proceedings of the 14th International Symposium on Very High Energy Cosmic Ray Interactions (Weihai, China, 2006) (Nucl. Phys. B (Proc. Suppl.) 175–176) (eds) K S Cheng, R Engel, Y Q Ma, B Pattison, Z G Yao and Q Q Zhu (The Netherlands: Elsevier Press) p 54 (2008)

  28. R Hagedorn Riv. Nuovo Cim. 6 10 1 (1983)

    Article  Google Scholar 

  29. B Abelev, J Adam, D Adamová et al [ALICE Collaboration] Eur. Phys. J. C 75 1 (2015)

  30. K Aamodt, N Abel, U Abeysekara et al [ALICE Collaboration] Phys. Lett. B 693 53 (2010)

  31. A De Falco [for the ALICE Collaboration] J. Phys. G 38 124083 (2011)

  32. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  33. C Tsallis Braz. J. Phys. 39 337 (2009)

    Article  ADS  Google Scholar 

  34. T S Biró, G Purcsel and K Urmössy Eur. Phys. J. A 40 325 (2009)

    Article  ADS  Google Scholar 

  35. J Cleymans and M W Paradza Physics 2 654 (2020)

    Article  ADS  Google Scholar 

  36. E K G Sarkisyan and A S Sakharov The 35th International Symposium on Multiparticle Dynamics (ISMD 05) and 1st Workshop on Particle Correlations and Femtoscopy (WPCF 2005) (Kromeriz, Czech Republic, 2005) (AIP Conf. Proc. 828) (eds) V Simak, M Sumbera, S Todorova-Nova and B Tomasik (New York: AIP) p 35 (2006)

  37. E K G Sarkisyan and A S Sakharov Eur. Phys. J. C 70 533 (2010)

    Article  ADS  Google Scholar 

  38. A N Mishra, R Sahoo, E K G Sarkisyan and A S Sakharov Eur. Phys. J. C 74 3147 (2014). (Erratum Eur. Phys. J. C 75 70 (2015))

    Article  ADS  Google Scholar 

  39. E K G Sarkisyan, A N Mishra, R Sahoo and A S Sakharov Phys. Rev. D 93 054046 (2016). (Erratum Phys. Rev. D 93 079904 (2016))

    Article  ADS  Google Scholar 

  40. E K G Sarkisyan, A N Mishra, R Sahoo and A S Sakharov Phys. Rev. D 94 011501(R) (2016)

    Article  ADS  Google Scholar 

  41. E K G Sarkisyan, A N Mishra, R Sahoo and A S Sakharov Europhys. Lett. 127 62001 (2019)

    Article  ADS  Google Scholar 

  42. A N Mishra, A Ortiz and G Paic Phys. Rev. C 99 034911 (2019)

    Article  ADS  Google Scholar 

  43. P Castorina, A Iorio, D Lanteri, H Satz and M Spousta Phys. Rev. C 101 054902 (2020)

    Article  ADS  Google Scholar 

  44. K Werner Phys. Rep. 232 87 (1993)

    Article  ADS  Google Scholar 

  45. A M Badalian, V D Orlovsky and Y A Simonov Phys. Atom. Nucl. 76 955 (2013)

    Article  ADS  Google Scholar 

  46. Y A Simonov Phys. Rev. D 84 065013 (2011)

    Article  ADS  Google Scholar 

  47. S C Frautschi Phys. Rev. D 3 2821 (1971)

    Article  ADS  Google Scholar 

  48. F Csikor, Z Katona and I Montvay Lett. Nuovo Cim. 8 99 (1973)

    Article  Google Scholar 

  49. H Satz Phys. Rev. D 19 1912 (1979)

    Article  ADS  Google Scholar 

  50. A S Parvan Eur. Phys. J. A 56 106 (2020)

    Article  ADS  Google Scholar 

  51. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 772 167 (2006)

    Article  ADS  Google Scholar 

  52. A Andronic, P Braun-Munzinger and J Stachel Acta Phys. Pol. B 40 1005 (2009)

    ADS  Google Scholar 

  53. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 834 237c (2010)

    Article  ADS  Google Scholar 

  54. A Andronic, P Braun-Munzinger, K Redlich and J Stachel Nature 561 321 (2018)

    Article  ADS  Google Scholar 

  55. H-X Zhang and P-J Shan, Statistical simulation method for determinating the errors of fit parameters, in Proc. 8th Natl. Conf. Nucl. Phys. (Volume II), Xi’an, China (1991)

  56. F-H Liu, Y-Q Gao and H-R Wei Adv. High Energy Phys. 2014 293873 (2014)

    Google Scholar 

  57. N Yu and X-F Luo Eur. Phys. J. A 55 26 (2019)

    Article  ADS  Google Scholar 

  58. A Adare, S Afanasiev, C Aidala et al [PHENIX Collaboration] Phys. Rev. Lett. 101 232301 (2008)

  59. A Adare, S Afanasiev, C Aidala et al [PHENIX Collaboration] Phys. Rev. Lett. 101 162301 (2008)

  60. G Giacalone PhD thesis (Université Paris-Saclay, France) (2021), arXiv:2101.00168 [nucl-th] (2021)

  61. Z-J Xiao and C-D Lü Introduction to Particle Physics (Beijing, China: Science Press) Ch 6 Sec 2, 160 (2016)

  62. G Bíró, G G Barnaföldi and T S Biró, arXiv:2003.03278 [hep-ph] (2020)

  63. C Gale, S Jeon and B Schenke Int. J. Mod. Phys. A 28 1340011 (2013)

    Article  ADS  Google Scholar 

  64. A Jaiswal and V Roy Adv. High Energy Phys. 2016 9623034 (2016)

    Article  Google Scholar 

  65. C Shen and L Yan Nucl. Sci. Tech. 31 122 (2020)

    Article  Google Scholar 

  66. K Aamodt, A A Quintana, D Adamová et al [ALICE Collaboration] Phys. Lett. B 696 328 (2011)

Download references

Acknowledgments

The work of Shanxi Group was supported by the National Natural Science Foundation of China under Grant No. 12147215, the Shanxi Provincial Natural Science Foundation under Grant No. 202103021224036, and the Fund for Shanxi “1331 Project" Key Subjects Construction. The work of K.K.O. was supported by the Agency of Innovative Development under the Ministry of Higher Education, Science and Innovations of the Republic of Uzbekistan within the fundamental project No. F3-20200929146 on analysis of open data on heavy-ion collisions at RHIC and LHC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F.-H. Liu or K. K. Olimov.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper. The funding agencies have no role in the design of the study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JY., Duan, MY., Liu, FH. et al. Multi-source thermal model describing multi-region structure of transverse momentum spectra of identified particles and parameter dynamics of system evolution in relativistic collisions. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03003-4

Keywords

Navigation